Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of HIV’s strategy for multiplying in white blood cells

12.09.2007
The AIDS virus (HIV) attacks immune system cells and once inside them it multiplies. In some of these immune cells, viral stocks are not very accessible to antiviral therapy.

CNRS, Institut Curie and Institut Pasteur researchers investigating how HIV avoids being destroyed by immune cells have discovered that HIV alters the pH of the cellular compartments where it accumulates, thus stopping the activation of the very enzymes that would normally degrade it. This work was published in the 16 August 2007 issue of Cell Host and Microbe.

When viruses or infectious bacteria enter our body, the immune system is triggered to eliminate them, through a process involving various types of white blood cells. Some viruses target the immune system. For example, HIV (human immunodeficiency virus) attacks two sorts of white blood cells: macrophages, which play an early role in immune defense by phagocytosing and then digesting the invader, and certain lymphocytes (CD4 T lymphocytes), which come into play later in the immune response. HIV accumulates in the infected macrophages, which are veritable viral reservoirs pretty much inaccessible to antiviral treatments. Multiplication of HIV destroys the CD4 T lymphocytes.

At the Institut Curie, Philippe Benaroch, CNRS Director of Research, and his Intracellular Transport and Immunity group in the Inserm laboratory (1), have been studying the immune system and how it breaks down. They have investigated the proliferation of HIV in macrophages, in collaboration with their colleagues in the Virus and Immunity Laboratory of the Institut Pasteur associated with the CNRS(2). They have shown that the viral particles accumulate in certain compartments of the infected macrophages. Now, these compartments normally have an acid pH at which HIV shouldn’t survive. But pH measurements have revealed that HIV manages to impair the acidification of these compartments and so create an environment where it can survive and multiply. In these compartments, the enzymes that degrade viruses need an acid pH to work effectively, and so are put out of action by the change in pH produced by HIV. By controlling its environment, HIV can multiply within the infected macrophages, where compartments not containing viral proteins or particles seem to function normally.

... more about:
»Cells »HIV »accumulate »compartments »infected »macrophages

This study sheds new light on how HIV remains infectious for long periods of time in infected patients, and points the way to the identification of new therapeutic targets for the elimination of viral stocks in macrophages.

Catherine Goupillon | alfa
Further information:
http://www.cellhostandmicrobe.com/

Further reports about: Cells HIV accumulate compartments infected macrophages

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>