Biological Invasions can Begin with Just One Insect

Zayed, a recent graduate of Packer’s lab, examined patterns of genetic diversity in both native European and invasive North American populations of a solitary bee. He concluded that the invasion was most likely founded by one mated female. The study was published today in the open access journal PLoS ONE.

“This is a shocking result, especially since bees suffer from huge genetic problems in small populations,” says Zayed, now a postdoctoral fellow in the Department of Entomology at the University of Illinois.

“We’re now seeing that the introduction of even one single insect can cause a potentially costly invasion, so we have to be extremely vigilant with reducing the number of animals that are unintentionally transported around the globe,” he says.

The study contradicts a popular theory of invasive biology: the more individuals introduced to an area, the higher the success of the invasion. This concept is commonly referred to as the “propagule pressure hypothesis.”

Zayed adds that numbers are not the only factor controlling the success of invasions. “Chance and the specific characteristics of invasive species and their introduced habitats can be more important,” he says.

Packer, a professor in York’s Department of Biology, notes that exotic invasive species are considered a major threat to biodiversity conservation, and can cause huge economic losses.

“Understanding how exotic species establish and spread in their new habitats is the first step to solving the invasive species problem,” Packer says.

Media Contact

Andrew Hyde alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors