Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists shed new light on how antibodies fight HIV

10.09.2007
New findings may further efforts to create AIDS vaccine

By furthering scientists’ understanding of the molecular mechanisms that separate the minority of successful HIV antibodies from the majority of ineffective antibodies, the work may have implications for future attempts to design an HIV vaccine.

The study was published on September 6, 2007, in the journal Nature.

“This study is part of the effort to understand how protection against HIV occurs,” says Dennis Burton, a professor at The Scripps Research Institute. “If we really understand this, then we can design tailor-made vaccines in a way that has never been done before.”

... more about:
»B12 »CASCADE »HIV »LALA »Pathogen »Vaccine »immune cell »infected »receptor

Although vaccines have long been used with great success to prevent diseases, scientists are still learning about the exact mechanisms of how vaccines work and how the antibodies that vaccines prompt the body to create can neutralize a pathogen. The spread of HIV, which is resistant to most antibodies the body produces against it, has made fully understanding this method of action more urgent.

With this in mind, Burton and colleagues sought to tease apart the action of the b12 antibody-one of the rare antibodies that protects against the HIV virus. The antibody, first identified by Burton, Scripps Research Professor Carlos Barbas III, and colleagues in 1992, originally came from the bone marrow of a 31-year-old male who had been HIV positive without symptoms for six years.

In the current study, researchers created mutated versions of b12 to see what effect various changes would have on the antibody’s effectiveness.

“Hopefully, we can work backwards towards a vaccine, using b12 and the very few other really great, broadly neutralizing antibodies against HIV that have been found,” says Scripps Research Senior Research Associate Ann Hessell, who was first author of the Nature paper jointly with Lars Hangartner, a Scripps Research postdoctoral fellow.

Results from the new study suggest the importance of antibody activity against both infected cells and free virus for effective protection. As well as simply binding to HIV, protection was dependent upon the ability of antibodies to interact with immune cell Fc receptors.

Fc receptors are found on the surface of immune cells, such as natural killer cells. The Fc receptor binds to the Fc region of an antibody after an antibody binds to a pathogen, targeting the pathogen for attack by the immune system. Although Fc receptor function was known to be important for the function of antibodies against other diseases, a role in protecting against HIV had never before been demonstrated.

Burton’s team examined the ability of two antibodies mutated from b12, dubbed KA and LALA, to prevent infection using the SHIV/macaque model, in which macaques are challenged with a hybrid human-simian virus that infects the model but is recognized by human antibodies. The KA antibody contained a mutation that prevented it from interacting with the complement cascade, a major component of the immune system responsible for destroying invading pathogens. The LALA antibody contained a mutation that rendered it unable to interact with either the complement pathway or the Fc receptor.

In both mutants, the site where the antibody binds to free-floating virus was unaltered, allowing the researchers specifically to investigate the importance of the complement cascade and Fc receptor system for preventing infection.

“We saw that the KA antibody, which could still bind to the Fc receptors on the immune cells but not to the complement cascade, protected the animals from becoming infected just as the wild type b12 antibody,” says Hessell. “In contrast, the LALA group became infected much like the controls.”

The results provide the first evidence that the Fc receptor, but not the complement cascade, is important to the function of the b12 antibody in preventing HIV infection.

Additional in vitro experiments revealed that the wild type and KA antibodies, but not the LALA antibody, blocked infection more efficiently in the presence of other effector cells of the immune system.

“Our results are fully consistent with the antibody doing two jobs,” says Burton, “job one, stick to the virus; job two, recruit immune cells to come and kill infected cells.”

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

Further reports about: B12 CASCADE HIV LALA Pathogen Vaccine immune cell infected receptor

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Spinning rugby balls: The rotation of the most massive galaxies

23.05.2018 | Physics and Astronomy

Raiding the rape field

23.05.2018 | Agricultural and Forestry Science

Turning entanglement upside down

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>