Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

System Biology: an innovative agenda for combating disease; a new biotechnology

10.09.2007
Europe needs collective effort on System Biology, says ESF Task Force

Most of the diseases which plague humankind today are multifactorial: they are not simply the result of one mutation in one gene, producing one rogue protein that can no longer carry out its job. Diabetes and obesity, for instance, depend on many simultaneous genetic and environmental factors.

Similarly, in biotechnology, processes cannot be optimised by simply changing one component of a complex process. It is the networks of interaction that Systems Biology, the study of how biological networking produces function at the level of the cell, organ and body, focuses on. The idea is that once we know which networks are fired in health, and misfired in disease, we will know how to fix the consequences of misfires by treating networks rather than just component molecules.

The situation is much like that of hooliganism in a soccer stadium, explains Professor Hans Westerhoff, who splits his time between the Manchester Centre for Integrative Systems Biology, Manchester, U.K. and the Netherlands’ Institute for Systems Biology in Amsterdam and is a member of the ESF Task Force. If one person – or molecule – incites a person who then incites the next, then the whole crowd will misbehave. To deal with this, one should moderate the network, by making sure the individuals are too far apart to interact.

... more about:
»ESF »Organ »activities »scientists

Systems Biology requires the integration of precise mathematical and experimental approaches, in ways and to extents that are new to mainstream Biology and Medicine. Europe leads in most of these individual approaches, but Systems Biology of any particular disease requires the simultaneous study of all the links in huge networks, and the best scientists for each of the different links are in different European countries.

For Europe to take its lead in the research of Systems Biology, the continent needs to establish an interactive network itself, meaning that nations should not independently address their own parts of the ‘grand challenge’ of Systems Biology. A paradigm shift is needed therefore, away from isolated, country-based, molecular biology and physiology, to extensive and intensive networks of excellent scientists across Europe.

The European Science Foundation (ESF) Task Force, comprising of nine experts in the field, has published a series of recommendations build on the ESF Forward Look report Systems Biology: a Grand Challenge for Europe . In their Strategic Guidance and Recommendations they set out a road map to establish a pioneering Systems Biology research programme in Europe. Based on the advice given by the Task Force the next steps will be to start actual discussions among the ESF’s 75 Member Organisations, the Commission and other actors in the field, both public and private, on how to go forward.

The vision is that Europe will take the lead in making a ‘blue cell’ — a generic, model blueprint of a cell — and then fill out the blueprint with information for a number of important diseases and biotechnological processes.

One prerequisite for this is new, much more quantitative, and biology-specific technology. A massive initiative is needed to develop the kinds of advanced technology that can look at networks in cells, clusters of cells, organs and bodies.

“We cannot move forward in Systems Biology in Europe unless we have the technology to back up our vision,” says Professor Rudolf Aebersold from the Institute of Molecular Systems Biology at ETH in Zurich, Switzerland, and a member of the ESF Task Force. “We need new, powerful, user-friendly technologies not only to process and integrate large amounts of data, enhance data sharing and visualise models of biological systems, but also to collect that data in the first place.”

Though the ultimate goal is applying Systems Biology to human health, to begin with it is likely that technology will also be developed and tested in smaller organisms and then scaled up to humans. Equally, the Task Force recommends that to begin with, particular topics on a common theme are chosen, such as cancer or obesity, and generic technology is produced that can then be applied to other areas.

To organise research in Europe, the Task Force recommends dividing funded research into two sub-themes: Systems Biotechnology and Multifactorial Diseases. These should be connected to, and incorporate, existing research programmes in Europe.

To achieve these goals, a massive workforce from many difference disciplines will be needed.

“We need scientists that can understand both sides of the Systems Biology coin: biologists that can handle equations and physical scientists that know their way around in experimental biology,” says Professor Westerhoff. “The Task Force recommends that more support is given to existing Systems Biology training and exchange programmes so that scientists from other disciplines are attracted to our field.”

The Europe-wide network will also need ‘hubs’; European reference laboratories allowing any researcher to conduct high quality research, even if their home institution cannot support it. These should also distribute standard experimental procedures, samples and datasets to ensure that everyone in the network is working in the same way. Similarly, Institutes of Advanced Studies should be established to host short-duration, focused programmes for researchers from across Europe.

The Task force has also suggested the ESF should support the overseeing of this network by continuing to support and host the establishment of a consortium of interested parties and support a European Systems Biology Office.

Recommendations
A task force of representatives from organisations investing in, or soon to invest, in Systems Biology should be established, supported by a European Systems Biology Office.

The task force will then:

Initiate, coordinate and fund a single GRand Action on Systems Biology (GRASB), consisting of activities working towards the integral ‘Networks for Life’ project and become the world’s largest, best integrated, hence most effective Systems Biology programme.

Call for applications and expressions of interest in developing technology for and in carrying out world-leading Systems Biology research; a network of research on Systems Biotechnology; a network of research on multifactorial disease; a network of training activities; a network of European Reference Laboratories; and one or two Centres for Advanced Studies.

Organise workshops to ensure activities are kept up to date.

Develop a programme for GRASB, including funding mechanisms.

Define ways of disseminating strategies for all GRASB activities.

Thomas Lau | European Science Foundation
Further information:
http://www.esf.org
http://www.esf.org/fileadmin/be_user/research_areas/emrc/documents/SysbioTask.pdf

Further reports about: ESF Organ activities scientists

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>