Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

System Biology: an innovative agenda for combating disease; a new biotechnology

10.09.2007
Europe needs collective effort on System Biology, says ESF Task Force

Most of the diseases which plague humankind today are multifactorial: they are not simply the result of one mutation in one gene, producing one rogue protein that can no longer carry out its job. Diabetes and obesity, for instance, depend on many simultaneous genetic and environmental factors.

Similarly, in biotechnology, processes cannot be optimised by simply changing one component of a complex process. It is the networks of interaction that Systems Biology, the study of how biological networking produces function at the level of the cell, organ and body, focuses on. The idea is that once we know which networks are fired in health, and misfired in disease, we will know how to fix the consequences of misfires by treating networks rather than just component molecules.

The situation is much like that of hooliganism in a soccer stadium, explains Professor Hans Westerhoff, who splits his time between the Manchester Centre for Integrative Systems Biology, Manchester, U.K. and the Netherlands’ Institute for Systems Biology in Amsterdam and is a member of the ESF Task Force. If one person – or molecule – incites a person who then incites the next, then the whole crowd will misbehave. To deal with this, one should moderate the network, by making sure the individuals are too far apart to interact.

... more about:
»ESF »Organ »activities »scientists

Systems Biology requires the integration of precise mathematical and experimental approaches, in ways and to extents that are new to mainstream Biology and Medicine. Europe leads in most of these individual approaches, but Systems Biology of any particular disease requires the simultaneous study of all the links in huge networks, and the best scientists for each of the different links are in different European countries.

For Europe to take its lead in the research of Systems Biology, the continent needs to establish an interactive network itself, meaning that nations should not independently address their own parts of the ‘grand challenge’ of Systems Biology. A paradigm shift is needed therefore, away from isolated, country-based, molecular biology and physiology, to extensive and intensive networks of excellent scientists across Europe.

The European Science Foundation (ESF) Task Force, comprising of nine experts in the field, has published a series of recommendations build on the ESF Forward Look report Systems Biology: a Grand Challenge for Europe . In their Strategic Guidance and Recommendations they set out a road map to establish a pioneering Systems Biology research programme in Europe. Based on the advice given by the Task Force the next steps will be to start actual discussions among the ESF’s 75 Member Organisations, the Commission and other actors in the field, both public and private, on how to go forward.

The vision is that Europe will take the lead in making a ‘blue cell’ — a generic, model blueprint of a cell — and then fill out the blueprint with information for a number of important diseases and biotechnological processes.

One prerequisite for this is new, much more quantitative, and biology-specific technology. A massive initiative is needed to develop the kinds of advanced technology that can look at networks in cells, clusters of cells, organs and bodies.

“We cannot move forward in Systems Biology in Europe unless we have the technology to back up our vision,” says Professor Rudolf Aebersold from the Institute of Molecular Systems Biology at ETH in Zurich, Switzerland, and a member of the ESF Task Force. “We need new, powerful, user-friendly technologies not only to process and integrate large amounts of data, enhance data sharing and visualise models of biological systems, but also to collect that data in the first place.”

Though the ultimate goal is applying Systems Biology to human health, to begin with it is likely that technology will also be developed and tested in smaller organisms and then scaled up to humans. Equally, the Task Force recommends that to begin with, particular topics on a common theme are chosen, such as cancer or obesity, and generic technology is produced that can then be applied to other areas.

To organise research in Europe, the Task Force recommends dividing funded research into two sub-themes: Systems Biotechnology and Multifactorial Diseases. These should be connected to, and incorporate, existing research programmes in Europe.

To achieve these goals, a massive workforce from many difference disciplines will be needed.

“We need scientists that can understand both sides of the Systems Biology coin: biologists that can handle equations and physical scientists that know their way around in experimental biology,” says Professor Westerhoff. “The Task Force recommends that more support is given to existing Systems Biology training and exchange programmes so that scientists from other disciplines are attracted to our field.”

The Europe-wide network will also need ‘hubs’; European reference laboratories allowing any researcher to conduct high quality research, even if their home institution cannot support it. These should also distribute standard experimental procedures, samples and datasets to ensure that everyone in the network is working in the same way. Similarly, Institutes of Advanced Studies should be established to host short-duration, focused programmes for researchers from across Europe.

The Task force has also suggested the ESF should support the overseeing of this network by continuing to support and host the establishment of a consortium of interested parties and support a European Systems Biology Office.

Recommendations
A task force of representatives from organisations investing in, or soon to invest, in Systems Biology should be established, supported by a European Systems Biology Office.

The task force will then:

Initiate, coordinate and fund a single GRand Action on Systems Biology (GRASB), consisting of activities working towards the integral ‘Networks for Life’ project and become the world’s largest, best integrated, hence most effective Systems Biology programme.

Call for applications and expressions of interest in developing technology for and in carrying out world-leading Systems Biology research; a network of research on Systems Biotechnology; a network of research on multifactorial disease; a network of training activities; a network of European Reference Laboratories; and one or two Centres for Advanced Studies.

Organise workshops to ensure activities are kept up to date.

Develop a programme for GRASB, including funding mechanisms.

Define ways of disseminating strategies for all GRASB activities.

Thomas Lau | European Science Foundation
Further information:
http://www.esf.org
http://www.esf.org/fileadmin/be_user/research_areas/emrc/documents/SysbioTask.pdf

Further reports about: ESF Organ activities scientists

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>