Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


System Biology: an innovative agenda for combating disease; a new biotechnology

Europe needs collective effort on System Biology, says ESF Task Force

Most of the diseases which plague humankind today are multifactorial: they are not simply the result of one mutation in one gene, producing one rogue protein that can no longer carry out its job. Diabetes and obesity, for instance, depend on many simultaneous genetic and environmental factors.

Similarly, in biotechnology, processes cannot be optimised by simply changing one component of a complex process. It is the networks of interaction that Systems Biology, the study of how biological networking produces function at the level of the cell, organ and body, focuses on. The idea is that once we know which networks are fired in health, and misfired in disease, we will know how to fix the consequences of misfires by treating networks rather than just component molecules.

The situation is much like that of hooliganism in a soccer stadium, explains Professor Hans Westerhoff, who splits his time between the Manchester Centre for Integrative Systems Biology, Manchester, U.K. and the Netherlands’ Institute for Systems Biology in Amsterdam and is a member of the ESF Task Force. If one person – or molecule – incites a person who then incites the next, then the whole crowd will misbehave. To deal with this, one should moderate the network, by making sure the individuals are too far apart to interact.

... more about:
»ESF »Organ »activities »scientists

Systems Biology requires the integration of precise mathematical and experimental approaches, in ways and to extents that are new to mainstream Biology and Medicine. Europe leads in most of these individual approaches, but Systems Biology of any particular disease requires the simultaneous study of all the links in huge networks, and the best scientists for each of the different links are in different European countries.

For Europe to take its lead in the research of Systems Biology, the continent needs to establish an interactive network itself, meaning that nations should not independently address their own parts of the ‘grand challenge’ of Systems Biology. A paradigm shift is needed therefore, away from isolated, country-based, molecular biology and physiology, to extensive and intensive networks of excellent scientists across Europe.

The European Science Foundation (ESF) Task Force, comprising of nine experts in the field, has published a series of recommendations build on the ESF Forward Look report Systems Biology: a Grand Challenge for Europe . In their Strategic Guidance and Recommendations they set out a road map to establish a pioneering Systems Biology research programme in Europe. Based on the advice given by the Task Force the next steps will be to start actual discussions among the ESF’s 75 Member Organisations, the Commission and other actors in the field, both public and private, on how to go forward.

The vision is that Europe will take the lead in making a ‘blue cell’ — a generic, model blueprint of a cell — and then fill out the blueprint with information for a number of important diseases and biotechnological processes.

One prerequisite for this is new, much more quantitative, and biology-specific technology. A massive initiative is needed to develop the kinds of advanced technology that can look at networks in cells, clusters of cells, organs and bodies.

“We cannot move forward in Systems Biology in Europe unless we have the technology to back up our vision,” says Professor Rudolf Aebersold from the Institute of Molecular Systems Biology at ETH in Zurich, Switzerland, and a member of the ESF Task Force. “We need new, powerful, user-friendly technologies not only to process and integrate large amounts of data, enhance data sharing and visualise models of biological systems, but also to collect that data in the first place.”

Though the ultimate goal is applying Systems Biology to human health, to begin with it is likely that technology will also be developed and tested in smaller organisms and then scaled up to humans. Equally, the Task Force recommends that to begin with, particular topics on a common theme are chosen, such as cancer or obesity, and generic technology is produced that can then be applied to other areas.

To organise research in Europe, the Task Force recommends dividing funded research into two sub-themes: Systems Biotechnology and Multifactorial Diseases. These should be connected to, and incorporate, existing research programmes in Europe.

To achieve these goals, a massive workforce from many difference disciplines will be needed.

“We need scientists that can understand both sides of the Systems Biology coin: biologists that can handle equations and physical scientists that know their way around in experimental biology,” says Professor Westerhoff. “The Task Force recommends that more support is given to existing Systems Biology training and exchange programmes so that scientists from other disciplines are attracted to our field.”

The Europe-wide network will also need ‘hubs’; European reference laboratories allowing any researcher to conduct high quality research, even if their home institution cannot support it. These should also distribute standard experimental procedures, samples and datasets to ensure that everyone in the network is working in the same way. Similarly, Institutes of Advanced Studies should be established to host short-duration, focused programmes for researchers from across Europe.

The Task force has also suggested the ESF should support the overseeing of this network by continuing to support and host the establishment of a consortium of interested parties and support a European Systems Biology Office.

A task force of representatives from organisations investing in, or soon to invest, in Systems Biology should be established, supported by a European Systems Biology Office.

The task force will then:

Initiate, coordinate and fund a single GRand Action on Systems Biology (GRASB), consisting of activities working towards the integral ‘Networks for Life’ project and become the world’s largest, best integrated, hence most effective Systems Biology programme.

Call for applications and expressions of interest in developing technology for and in carrying out world-leading Systems Biology research; a network of research on Systems Biotechnology; a network of research on multifactorial disease; a network of training activities; a network of European Reference Laboratories; and one or two Centres for Advanced Studies.

Organise workshops to ensure activities are kept up to date.

Develop a programme for GRASB, including funding mechanisms.

Define ways of disseminating strategies for all GRASB activities.

Thomas Lau | European Science Foundation
Further information:

Further reports about: ESF Organ activities scientists

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>