Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study details regulation of vital tumor suppressor gene p53

07.09.2007
Related modifications at single DNA site seen to have contradictory effects

So vital is the p53 tumor suppressor gene in controlling cancer that its dysfunction is linked to more than half of human cancers. At the same time, the gene’s capacity for shutting down cell growth, even causing cells to commit suicide if necessary, is so absolute that it must be tightly regulated to maintain the optimal balance between protecting against cancer and permitting normal growth.

Now, a study by scientists at The Wistar Institute reveals new levels of subtlety in the body’s management of this all-important tumor suppressor gene and the protein it produces. The experiments show that, while the addition of a specific molecule at a particular site on the p53 protein prevents it from acting, the addition of a second copy of the same molecule at the same site reverses the effect, sending p53 into action. Further, removal of the second copy returns the protein to its repressed state.

In addition to the implications for understanding the activity of the p53 gene, the findings also outline an important new cycle of gene-regulating modifications involving the addition and removal of the molecules, called methyl groups, that may be widespread in the genome. A report on the study appears in the September 6 issue of Nature.

... more about:
»DNA »addition »methyl »p53 »suppressor

“The p53 tumor suppressor is extremely potent in halting cell growth,” says Shelley L. Berger, Ph.D., the Hilary Koprowski Professor at The Wistar Institute and senior author on the study. “So, as critical as p53 is in protecting against the unchecked growth of cancer, you don’t want it constantly on. If it were always on, your cells wouldn’t be able to grow normally. Yet it needs to be constantly on call for activation against cancer and other aberrant cellular developments. Our study shows one way that the cell, working at one particular location on the p53 protein, maintains a nuanced but firm control over the gene’s activity.”

Responsible for tumor suppression throughout the body, the p53 gene is mutated or otherwise disabled in a majority of human cancers. When working properly, the protein produced by the p53 gene acts by binding to DNA to activate other genes that direct cells with damaged DNA to cease dividing until the damage can be repaired. Cells with such damage include cancer cells, since all cancers track to genetic flaws of one kind or another, whether inherited or acquired. If repairs cannot be made, p53 commands the cells with damaged DNA to self-destruct so they are no longer a danger to the body.

This powerful ability of p53 to shut down cell division and induce cell death points to why fine-tuned regulatory mechanisms such as the one outlined in the new study are crucial for cellular survival.

In a previous study published in Nature in November 2006, Berger and her colleagues showed that the addition of a single methyl group – a tiny molecule consisting of one carbon and three hydrogen atoms – at a specific site on the p53 protein was sufficient to repress its activity. In the current study, the researchers found that the addition of a second methyl group at the same site reversed the effect. With the pair of methyl groups in place, the site is able to attract and bind a molecule called 53bp1, itself required for the p53 protein to bind to DNA to launch the genes responsible for carrying out its tumor-suppressing mission. With one methyl group in place, the site is said to be monomethylated; with two in place, it is dimethylated.

“An important finding from our study is that the dimethylation mark is the required recognition site for 53bp1 on the p53 protein,” says Jing Huang, Ph.D., lead author on the Nature study. “If you remove that mark, 53bp1 cannot associate with the p53 protein, and p53’s activity will be reduced.”

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.org

Further reports about: DNA addition methyl p53 suppressor

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>