Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study details regulation of vital tumor suppressor gene p53

07.09.2007
Related modifications at single DNA site seen to have contradictory effects

So vital is the p53 tumor suppressor gene in controlling cancer that its dysfunction is linked to more than half of human cancers. At the same time, the gene’s capacity for shutting down cell growth, even causing cells to commit suicide if necessary, is so absolute that it must be tightly regulated to maintain the optimal balance between protecting against cancer and permitting normal growth.

Now, a study by scientists at The Wistar Institute reveals new levels of subtlety in the body’s management of this all-important tumor suppressor gene and the protein it produces. The experiments show that, while the addition of a specific molecule at a particular site on the p53 protein prevents it from acting, the addition of a second copy of the same molecule at the same site reverses the effect, sending p53 into action. Further, removal of the second copy returns the protein to its repressed state.

In addition to the implications for understanding the activity of the p53 gene, the findings also outline an important new cycle of gene-regulating modifications involving the addition and removal of the molecules, called methyl groups, that may be widespread in the genome. A report on the study appears in the September 6 issue of Nature.

... more about:
»DNA »addition »methyl »p53 »suppressor

“The p53 tumor suppressor is extremely potent in halting cell growth,” says Shelley L. Berger, Ph.D., the Hilary Koprowski Professor at The Wistar Institute and senior author on the study. “So, as critical as p53 is in protecting against the unchecked growth of cancer, you don’t want it constantly on. If it were always on, your cells wouldn’t be able to grow normally. Yet it needs to be constantly on call for activation against cancer and other aberrant cellular developments. Our study shows one way that the cell, working at one particular location on the p53 protein, maintains a nuanced but firm control over the gene’s activity.”

Responsible for tumor suppression throughout the body, the p53 gene is mutated or otherwise disabled in a majority of human cancers. When working properly, the protein produced by the p53 gene acts by binding to DNA to activate other genes that direct cells with damaged DNA to cease dividing until the damage can be repaired. Cells with such damage include cancer cells, since all cancers track to genetic flaws of one kind or another, whether inherited or acquired. If repairs cannot be made, p53 commands the cells with damaged DNA to self-destruct so they are no longer a danger to the body.

This powerful ability of p53 to shut down cell division and induce cell death points to why fine-tuned regulatory mechanisms such as the one outlined in the new study are crucial for cellular survival.

In a previous study published in Nature in November 2006, Berger and her colleagues showed that the addition of a single methyl group – a tiny molecule consisting of one carbon and three hydrogen atoms – at a specific site on the p53 protein was sufficient to repress its activity. In the current study, the researchers found that the addition of a second methyl group at the same site reversed the effect. With the pair of methyl groups in place, the site is able to attract and bind a molecule called 53bp1, itself required for the p53 protein to bind to DNA to launch the genes responsible for carrying out its tumor-suppressing mission. With one methyl group in place, the site is said to be monomethylated; with two in place, it is dimethylated.

“An important finding from our study is that the dimethylation mark is the required recognition site for 53bp1 on the p53 protein,” says Jing Huang, Ph.D., lead author on the Nature study. “If you remove that mark, 53bp1 cannot associate with the p53 protein, and p53’s activity will be reduced.”

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.org

Further reports about: DNA addition methyl p53 suppressor

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>