Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prions and retroviruses – an unholy alliance?

07.09.2007
Expression of endogenous retroviruses is changed after prion infection

In work originating from the Bavarian Research Cooperation Prions (FORPRION), which ended in 2007, a team led by the scientist Prof. Dr. Christine Leib-Mösch has been able to show that prion proteins may activate endogenous retroviruses in infected brain cells.

In the Institute of Molecular Virology of the GSF – National Research Center for Environment and Health in Neuherberg/Munich (Helmholtz Association of German Research Centres) the group is continuing to search for cellular components whose make-up is changed as a result of a prion infection. In collaboration with colleagues from the Technical University of Munich and the University of Heidelberg, the group used micro-array technologies – micro-arrays are chips with thousands or tens of thousands of DNA or protein probes - and could demonstrate that the expression of endogenous retroviruses is influenced by infectious prion proteins in tests with mouse cells.

Prions – an abbreviation for proteinaceous infectious particles – work as a trigger to a set of diseases of the brain and nervous system, the so-called spongiform encephalopathies. These include BSE in cattle, scrapie in sheep and Creutzfeldt Jakob’s Disease in humans. Prions are structural variants of a normal protein found in healthy tissues – especially in the brain. The devastating effect of infectious prions is that, once they have entered the organism, they can modify the normal "healthy" prion proteins to create more infectious prions, and thus cause the illness to progress. However, as yet, little is known about the molecular mechanisms of pathogenesis, the role of co-factors and the interaction of prion proteins with cellular components.

Retroviruses insert their genetic information into the genome of host cells. In the case of endogenous retroviruses, this involves retroviral infections from long ago, which were transmitted through many generations by means of the germ line. Nearly ten percent of the genome of mice and humans consists of endogenous retroviral sequences that have accumulated during the course of evolution. Indeed, most structural genes of endogenous retroviruses are inactive, but many regulatory elements, such as binding sites for transcription factors, often remain active and can influence neighbouring cellular genes.

The GSF scientists infected mouse neural cells kept in culture with infectious prion proteins and subsequently analysed the expression patterns of endogenous retroviruses. The results showed that the expression of a set of endogenous retroviral sequences is influenced by the prion infection: in comparison with uninfected cells, the expression partly increased but also partly decreased – depending on the cell line and the type of endogenous retroviruses. These effects could be suppressed by pentosan-polysulphate, an anti-prion drug, which means that the influence of the expression can be attributed to the prions and not to some secondary effects.

These observations suggest that prion proteins may stimulate the production of retroviral particles by activation of endogenous retroviruses. Subsequently, these retrovirus-like particles could transport prion proteins from cell to cell, and thus spread the infection.

These studies were carried out within the scope of the “Bavarian Research Cooperation Prions” (FORPRION) in the Association of Bavarian Research Cooperations. FORPRION was founded in 2001 following the appearance of the first BSE cases in Bavaria and was financed equally from the budgets of the Bavarian State Ministry for Science, Research and Art, and the Bavarian State Ministry of Health Food and Consumer Affairs.

Through basic and applied research the consortium aims to make progress in the diagnosis and therapy of human and animal prion diseases, as well as in the field of preventive consumer protection. FORPRION linked up 25 projects, based at five Bavarian universities and in institutes of the Max Planck Society. The financial support of the Bavarian Research Cooperation Prions FORPRION ended in June, 2007.

Michael van den Heuvel | alfa
Further information:
http://www.gsf.de/neu/Aktuelles/Presse/2007/prionen_en.php

Further reports about: Cooperation FORPRION Infection endogenous prion protein prions retroviral retroviruses

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>