Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse with myotonic dystrophy type 1 finds RNA binding proteins at heart of problem

06.09.2007
A new mouse model for myotonic dystrophy – the most common form of adult-onset muscular dystrophy – helped Baylor College of Medicine researchers show that levels of CUGBP1, a protein that binds and controls the activity of the genetic material RNA, increase early in affected cells of the animals with the disease. This means CUGBP1 plays a key role in the disorder.

“We wanted to find out if this is a primary event associated with the disorder or if it is a secondary response to tissue injury,” said Dr. Thomas A. Cooper, professor of pathology at BCM and senior author of the report that appears today in the Journal of Clinical Investigation.

Myotonic dystrophy type 1 is associated with hundreds and even thousands of repeats of the nucleotides CTG within a gene called DM kinase protein gene or DMPK. [Cytosine (C), thymine (T), guanine (G) and adenine (A) are all nucleotides that make up DNA. C, G, A, and uracil (U) make up RNA.] In the mouse that Cooper and his colleagues specially bred, the repeats in the gene can be turned on in heart, skeletal muscle and brain tissue at any age.

The researchers found that within three hours of turning on the repeats, another RNA-binding protein called muscleblind like (MBNL) began to bind the genetic material in the nucleus of the cell. That mean the RNA was trapped in the nucleus and unable to take the genetic message about which proteins to make to the protein manufacturing areas in the cytoplasm of the cell.

... more about:
»CUGBP1 »RNA »dystrophy

Within six hours, levels of CUGBP1 begin to increase. The increased in CUGBP1 then alters how a number of other genes are regulated. At that point, the cascade of events that affect the heart starts.

“The heart doesn’t even ‘know’ that it is sick yet,” said Cooper. This finding shows that the increase levels of CUGBP1 is an early event and plays an important role in the development of the disease.

Others who took part in this research include Drs. Guey-Shin Wang, Debra L. Kearney, Mariella De Biasi and George Taffet, all of BCM. Funding for this research came from the National Institutes of Health and the Muscular Dystrophy Association.

Graciela Gutierrez | EurekAlert!
Further information:
http://www.jci.org/
http://www.bcm.edu

Further reports about: CUGBP1 RNA dystrophy

More articles from Life Sciences:

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>