Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists get grip on slippery lipids

03.09.2007
The ability of the body's cells to correctly receive and convey signals is crucial to good health.

Lipids, or fats, play a critical role in this regulation by providing spaces for proteins to gather and network. They are helped in this process by protein molecules called lipid binding domains.

Understanding how these domains work may open up new targets of opportunity for drug development to treat illnesses such as cancer, diabetes and various inflammatory diseases.

Studying lipid binding domains is a specialty of Wonhwa Cho, distinguished professor of chemistry at the University of Illinois at Chicago. In two recently released papers appearing in the EMBO Journal and the Journal of Biological Chemistry, Cho and his associates describe mechanisms by which a particular binding domain -- the PX or "Phox" -- recognize specific lipids and interact with cell membranes to modulate functions.

... more about:
»Cho »Lipid »Protein »Signaling »binding »interact »particular

"The PX domain can recognize and interact with a large number of lipid molecules and other proteins," said Cho. "We study how particular types of PX domains recognize specific lipids."

In the papers, Cho describes the structure and function PX domains from two proteins, KIF16B and Bem1p, which interact with a class of signaling lipids called phosphoinositides.

"KIF16B-PX domain is a critical component of the regulatory mechanism to modulate the duration of receptor-mediated cell signaling pathways," Cho said. "That's important because both prolonged and shortened signaling pathways will cause problems."

"Bem1p-PX domain is a yeast scaffold protein that's critical for cell polarity. It serves as an excellent model system to study how a scaffold protein goes to the cell membrane in response to a particular lipid signal, and then modulates multiple protein-protein interactions."

Cho's research group pioneered a novel biophysical approach to explain the complex mechanisms by which cellular lipid signals specifically and divergently activate a wide array of lipid binding domains and the proteins harboring these domains during various cellular processes.

"This research may help in development of new types of small molecules and drugs that specifically modulate the signaling and trafficking processes," Cho said. "For example, if a cellular malfunction is caused by over-activation of a particular lipid-mediated pathway, then we can turn off that pathway by developing a compound that interferes with the interaction of the lipid with its binding protein."

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

Further reports about: Cho Lipid Protein Signaling binding interact particular

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>