Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers propose new molecule to explain circadian clock

The internal clock in living beings that regulates sleeping and waking patterns -- usually called the circadian clock -- has often befuddled scientists due to its mysterious time delays.

Molecular interactions that regulate the circadian clock happen within milliseconds, yet the body clock resets about every 24 hours. What, then, stretches the expression of the clock over such a relatively long period?

Cornell researchers have contributed to the answer, thanks to new mathematical models recently published.

In the August online edition of Public Library of Science (PLOS) Computational Biology, Cornell biomolecular engineer Kelvin Lee, in collaboration with graduate student Robert S. Kuczenski, Kevin C. Hong '05 and Jordi Garcia-Ojalvo of Universitat Politecnica de Catalunya, Spain, hypothesize that the accepted model of circadian rhythmicity may be missing a key link, based on a mathematical model of what happens during the sleeping/waking cycle in fruit flies.

... more about:
»Protein »circadian »clock

"We didn't discover any new proteins or genes," Lee said. "We took all the existing knowledge, and we tried to organize it."

Using mathematical models initially created by Hong, who has since graduated, the team set out to map the molecular interactions of proteins called period and timeless -- widely known to be related to the circadian clock.

The group hypothesized that an extra, unknown protein would need to be inserted into the cycle with period and timeless, a molecule that Kuczenski named the focus-binding mediator, in order for the cycle to stretch to 24 hours.

Lee said many scientists are interested in studying the circadian clock, and not just to understand such concepts as jet lag -- fatigue induced by traveling across time zones. Understanding the body's biological cycle might, for example, lead to better timing of delivering chemotherapy, when the body would be most receptive, Lee said.

Press Relations Office | EurekAlert!
Further information:

Further reports about: Protein circadian clock

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>