Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanowire coating for bone implants, stents

28.08.2007
University of Arkansas researchers have found a simple, inexpensive way to create a nanowire coating on the surface of biocompatible titanium that can be used to create more effective surfaces for hip replacement, dental reconstruction and vascular stenting. Further, the material can easily be sterilized using ultraviolet light and water or using ethanol, making it useful in hospital settings and meat-processing plants.

Wenjun Dong, Tierui Zhang, Lisa Cooney, Hong Wang, Yanbin Li, Andrew Cogbill, Vijay Varadan and Z. Ryan Tian of the University of Arkansas, Ying-Bing Jiang of the University of New Mexico, and Joshua Epstein of the University of Arkansas for Medical Sciences report their findings in an upcoming issue of the journal Chemistry of Materials.

The researchers used an alkali and heat to create titanium oxide-based ceramic nanowires that coat the surface of a titanium medical device.

"We can control the length, the height, the pore openings and the pore volumes within the nanowire scaffolds" by varying the time, temperature and alkali concentration in the reaction, said Z. Ryan Tian, assistant professor of chemistry and biochemistry in the J. William Fulbright College of Arts and Sciences. "This process is also extremely sustainable," requiring only that the device be rinsed in reusable water after the heating process.

... more about:
»Coating »Implant »Stent »Tian »nanowire »titanium

Reconstructive bone surgeries, such as hip replacements, use titanium implants. However, muscle tissue may not adhere well to titanium's smooth surface, causing the implant to fail after a decade or so and requiring the patient to undergo a second surgery.

Tian and his colleagues created a nanowire-coated joint and placed it in mice. After four weeks, the researchers found that tissue had adhered to the joint.

"We saw beautiful tissue growth - lots of muscle fibers," Tian said. "We've added one more function to the currently-in-use titanium implant."

Because the researchers can control the size and shape of the pores in the nanowire scaffold, the material also could be coated onto stents used in patients with coronary artery disease and in potential stroke victims. Conventional stents sometimes become reclogged with fat after implantation. The most recent stent used to address this problem, called the drug-eluting stent, consists of a polymer coating mixed with the drugs, but the coating may be vulnerable to biodegradation, and may not function for long. The nanowire coating without the degradation problem could be used to carry drugs that would help keep the arteries clear over a long period of time.

"This drug release could be applied to the angioplasty catheter's surface," Tian said.

In addition to these biomedical applications, the nanofiber scaffold has a property that may make it useful in both hospitals and food processing plants: The material, when rinsed in water and exposed to ultraviolet light, kills more than 99 percent of bacteria on its surface. This effect occurs because photons from the light cause a charge separation on the material, splitting water molecules into free radicals that destroy the bacteria. Alternatively, immersion in 70 percent ethanol completely sterilizes the material, allowing growth of cells/tissues in the laboratory prior to implantation.

This property could prove extremely useful in bacteria-prone environments, performing such functions as sterilizing on-site surgery hospitals used during military actions or cleaning surfaces in meat-processing plants.

"You could just use water to rinse and UV light to sterilize surfaces," Tian said.

The researchers have applied for a provisional patent for the multifunctional nanowire bioscaffolds on titanium or titanium-containing alloys such as Nitinol.

Melissa Lutz Blouin | EurekAlert!
Further information:
http://www.uark.edu

Further reports about: Coating Implant Stent Tian nanowire titanium

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>