Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist uses mass spectrometer to weigh virus particle, von Willebrand factor

27.08.2007
With unprecedented sensitivity, Carnegie Mellon University’s Mark Bier has characterized large viral particles and bulky von Willebrand factors using a novel mass spectrometer. These exciting results may lead to new biological discoveries and represent a step closer to rapid disease diagnosis using mass spectrometry.

“This is a new frontier in mass spectrometry research,” said Bier, associate research professor and director of the Center for Molecular Analysis in the Department of Chemistry in the Mellon College of Science. “We anticipate that this work will help to advance research in proteomics, virology, molecular biology and nanotechnology.” Bier will present his research Thursday, Aug. 23 at the 234th national meeting of the American Chemical Society in Boston.

Mass spectrometers, which separate molecules based on their mass-to-charge ratio, can help researchers identify compounds based on their unique mass and are routinely used to determine the weight, structure and amount of small molecules or fragments of molecules. Conventional instruments, however, are not equipped to sensitively characterize large molecules over 150 kiloDaltons (a measure of mass) at a low-charge state.

Using a Macromizer™ mass spectrometer, Bier’s group successfully analyzed the outer shell of the HK97 virus. They collected a mass spectrum of the mature protein shell, which weighs 12.9 megaDaltons (12,900 kiloDaltons) and the uncleaved protein shell (17.7 megaDaltons), which revealed an unprecedented 30+ positive charges. They also collected an improved mass spectrum of a von Willebrand factor (0.2 to 1.1 megaDaltons), a protein complex in blood necessary for proper coagulation. The ability to directly mass-analyze these heavy biological molecules intact and at a low-charge state represents a new level of analysis previously unattainable using conventional detector technology, according to Bier.

Many biological molecules are too big to be analyzed efficiently at low-charge states using current mass spectrometers, so most scientists break proteins down into smaller fragments before analyzing them in the mass spectrometer. Although an effective and powerful technique, this bottom-up approach typically takes days to complete and does not allow scientists to use mass spectrometers to directly study many large, intact proteins and other macromolecular complexes.

Bier conducted his studies using a top-down approach of the intact complex using a cryodetector-based MALDI TOF mass spectrometer (Macromizer) equipped with 16 superconducting tunnel junctions. Carnegie Mellon houses the only two of these instruments in the U.S. Bier’s group can use the Macromizer to measure the molecular weight of a large, intact protein or a protein complex in a matter of seconds. Because it can measure intact protein complexes, this approach also avoids the sample loss that typically occurs during the bottom-up approach.

“Our results are a first step toward our ultimate goal — to identify a virus, clotting factor or any type of large biological molecule by just weighing it or its gas-phase-generated fragments,” said Bier. “This would provide a rapid clinical tool to diagnose a viral infection or a blood disease, for example.”

Bier is collaborating with Roger Hendrix, a professor of biological sciences at the University of Pittsburgh, who studies how the outer shell of the HK97 virus assembles. Because Hendrix characterizes viral proteins, particles and subunits that are too heavy to study using currently available mass spectrometers, Bier hopes that his data will help them discover new biology. Bier is also collaborating with Dominic Chung, a research professor in the Department of Biochemistry at the University of Washington in Seattle, and Tom Howard, a medical doctor at the VA Greater Los Angeles Healthcare System, who together study von Willebrand factors. “Mark’s analysis by mass spectrometry displays a lot of the details about the composition of normal human plasma von Willebrand factor. This spectrum is truly amazing and very revealing,” Chung said.

Bier’s current work is part of a grant from the National Science Foundation’s (NSF) Biological Infrastructure program, which supports varied activities that provide the infrastructure for contemporary research in biology. With this NSF support, Bier is also building a next-generation heavy ion mass spectrometer.

Amy Pavlak | EurekAlert!
Further information:
http://www.cmu.edu
http://mass-spec.chem.cmu.edu/www-mbier/

Further reports about: Complex Particle Virus Willebrand factor intact mass spectrometer

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>