Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toxic shock: immune system's anthrax link

27.08.2007
Human immune proteins crucial for fighting cancer, viruses and bacterial infections belong to an ancient and lethal toxin family previously only found in bacteria, Australian researchers have found.

These proteins, called perforins, are related to bacterial toxins that cause diseases such as anthrax, gas gangrene and scarlet fever. The discovery was made by a team led by Professor James Whisstock and Dr Michelle Dunstone from Monash University’s School of Biomedical Sciences.

Professor Whisstock, winner of the 2006 Science Minister’s Prize for Life Scientist of the Year, said the team was stunned when it became clear that the bacterial toxins and perforins had a common ancestor.

“Over millions of years of evolution bacteria developed these proteins as weapons of attack,” he said. “But animals have evolved these proteins for defence against that attack. It’s a molecular arms race and there’s still no clear winner.”

... more about:
»Anthrax »Perforin »Toxin »Whisstock »bacterial »immune

Professor Whisstock said perforins were so-called because they kill bacteria, virally-infected cells and cancerous cells by punching tiny holes that perforate them. “People who lack one of these perforins can develop a serious blood disease called hemophagocytic lymphohistiocytosis and may be predisposed to develop cancer,” he said.

“Perforins are also dangerous molecules. They can create absolute havoc in the immune system if they’re not controlled properly. By understanding how they work we can find ways to control them in infectious diseases and areas such as transplantation rejection.”

Using X-ray crystallography, the team worked out the structure of a perforin called Plu-MACPF, which, due to its similarity to the bacterial toxins, told them how the whole perforin family worked. Their findings are published today in the international journal Science.

Dr Dunstone said the findings were the culmination of nine years of research. “Now we finally know what perforins look like and how they work, we can use this knowledge to develop new ways to fight disease,” she said.

Professor Whisstock said certain perforins were not only important for defending humans against attack by bacteria and viruses, but also important for propagating the human species because of their role in embryo implantation. “It is ironic that we fear diseases such as anthrax yet from the same family of toxins comes a protein that is involved in reproduction,” he said.

The research team included scientists from the National Health and Medical Research Council’s protease systems biology program, the Australian Research Council’s Centre of Excellence in Structural and Functional Microbial Genomics and the Peter MacCallum Cancer Centre. The X-ray data was collected at the Advanced Photon Source in Chicago.

Prof James Whisstock | EurekAlert!
Further information:
http://www.monash.edu.au

Further reports about: Anthrax Perforin Toxin Whisstock bacterial immune

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>