Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toxic shock: immune system's anthrax link

27.08.2007
Human immune proteins crucial for fighting cancer, viruses and bacterial infections belong to an ancient and lethal toxin family previously only found in bacteria, Australian researchers have found.

These proteins, called perforins, are related to bacterial toxins that cause diseases such as anthrax, gas gangrene and scarlet fever. The discovery was made by a team led by Professor James Whisstock and Dr Michelle Dunstone from Monash University’s School of Biomedical Sciences.

Professor Whisstock, winner of the 2006 Science Minister’s Prize for Life Scientist of the Year, said the team was stunned when it became clear that the bacterial toxins and perforins had a common ancestor.

“Over millions of years of evolution bacteria developed these proteins as weapons of attack,” he said. “But animals have evolved these proteins for defence against that attack. It’s a molecular arms race and there’s still no clear winner.”

... more about:
»Anthrax »Perforin »Toxin »Whisstock »bacterial »immune

Professor Whisstock said perforins were so-called because they kill bacteria, virally-infected cells and cancerous cells by punching tiny holes that perforate them. “People who lack one of these perforins can develop a serious blood disease called hemophagocytic lymphohistiocytosis and may be predisposed to develop cancer,” he said.

“Perforins are also dangerous molecules. They can create absolute havoc in the immune system if they’re not controlled properly. By understanding how they work we can find ways to control them in infectious diseases and areas such as transplantation rejection.”

Using X-ray crystallography, the team worked out the structure of a perforin called Plu-MACPF, which, due to its similarity to the bacterial toxins, told them how the whole perforin family worked. Their findings are published today in the international journal Science.

Dr Dunstone said the findings were the culmination of nine years of research. “Now we finally know what perforins look like and how they work, we can use this knowledge to develop new ways to fight disease,” she said.

Professor Whisstock said certain perforins were not only important for defending humans against attack by bacteria and viruses, but also important for propagating the human species because of their role in embryo implantation. “It is ironic that we fear diseases such as anthrax yet from the same family of toxins comes a protein that is involved in reproduction,” he said.

The research team included scientists from the National Health and Medical Research Council’s protease systems biology program, the Australian Research Council’s Centre of Excellence in Structural and Functional Microbial Genomics and the Peter MacCallum Cancer Centre. The X-ray data was collected at the Advanced Photon Source in Chicago.

Prof James Whisstock | EurekAlert!
Further information:
http://www.monash.edu.au

Further reports about: Anthrax Perforin Toxin Whisstock bacterial immune

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>