Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toxic shock: immune system's anthrax link

27.08.2007
Human immune proteins crucial for fighting cancer, viruses and bacterial infections belong to an ancient and lethal toxin family previously only found in bacteria, Australian researchers have found.

These proteins, called perforins, are related to bacterial toxins that cause diseases such as anthrax, gas gangrene and scarlet fever. The discovery was made by a team led by Professor James Whisstock and Dr Michelle Dunstone from Monash University’s School of Biomedical Sciences.

Professor Whisstock, winner of the 2006 Science Minister’s Prize for Life Scientist of the Year, said the team was stunned when it became clear that the bacterial toxins and perforins had a common ancestor.

“Over millions of years of evolution bacteria developed these proteins as weapons of attack,” he said. “But animals have evolved these proteins for defence against that attack. It’s a molecular arms race and there’s still no clear winner.”

... more about:
»Anthrax »Perforin »Toxin »Whisstock »bacterial »immune

Professor Whisstock said perforins were so-called because they kill bacteria, virally-infected cells and cancerous cells by punching tiny holes that perforate them. “People who lack one of these perforins can develop a serious blood disease called hemophagocytic lymphohistiocytosis and may be predisposed to develop cancer,” he said.

“Perforins are also dangerous molecules. They can create absolute havoc in the immune system if they’re not controlled properly. By understanding how they work we can find ways to control them in infectious diseases and areas such as transplantation rejection.”

Using X-ray crystallography, the team worked out the structure of a perforin called Plu-MACPF, which, due to its similarity to the bacterial toxins, told them how the whole perforin family worked. Their findings are published today in the international journal Science.

Dr Dunstone said the findings were the culmination of nine years of research. “Now we finally know what perforins look like and how they work, we can use this knowledge to develop new ways to fight disease,” she said.

Professor Whisstock said certain perforins were not only important for defending humans against attack by bacteria and viruses, but also important for propagating the human species because of their role in embryo implantation. “It is ironic that we fear diseases such as anthrax yet from the same family of toxins comes a protein that is involved in reproduction,” he said.

The research team included scientists from the National Health and Medical Research Council’s protease systems biology program, the Australian Research Council’s Centre of Excellence in Structural and Functional Microbial Genomics and the Peter MacCallum Cancer Centre. The X-ray data was collected at the Advanced Photon Source in Chicago.

Prof James Whisstock | EurekAlert!
Further information:
http://www.monash.edu.au

Further reports about: Anthrax Perforin Toxin Whisstock bacterial immune

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

New Test for Rare Immunodeficiency

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>