Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein Researchers Use Novel Approach to Uncover Genetic Components of Aging

27.08.2007
People who live to 100 or more are known to have just as many—and sometimes even more—harmful gene variants compared with younger people.

Now, scientists at the Albert Einstein College of Medicine of Yeshiva University have discovered the secret behind this paradox: favorable “longevity” genes that protect very old people from the bad genes’ harmful effects. The novel method used by the researchers could lead to new drugs to protect against age-related diseases.

“We hypothesized that people living to 100 and beyond must be buffered by genes that interact with disease-causing genes to negate their effects,” says Dr. Aviv Bergman, a professor in the departments of pathology and neuroscience at Einstein and senior author of the study, which appears in the August 31 issue of PLoS Computational Biology.

To test this hypothesis, Dr. Bergman and his colleagues examined individuals enrolled in Einstein’s Longevity Genes Project, initiated in 1998 to investigate longevity genes in a selected population: Ashkenazi (Eastern European) Jews. They are descended from a founder group of just 30,000 or so people. So they are relatively genetically homogenous, which simplifies the challenge of associating traits (in this case, age-related diseases and longevity) with the genes that determine them.

Participating in the study were 305 Ashkenazi Jews more than 95 years old and a control group of 408 unrelated Ashkenazi Jews. (Centenarians are so rare in human populations—only one in 10,000 people live to be 100—that “longevity” genes probably wouldn’t turn up in a typical control group. Longevity runs in families, so 430 children of centenarians were added to the control group to increase the number of favorable genes.)

All participants were grouped into cohorts representing each decade of lifespan from the 50’s on up. Using DNA samples, the researchers determined the prevalence in each cohort of 66 genetic markers present in 36 genes associated with aging.

As expected, some disease-related gene variants were as prevalent or even more prevalent in the oldest cohorts of Ashkenazi Jews than in the younger ones. And as Dr. Bergman had predicted, genes associated with longevity also became more common in each succeeding cohort. “These results indicate that the frequency of deleterious genotypes may increase among people who live to extremely old ages because their protective genes allow these disease-related genes to accumulate,” says Dr. Bergman.

The Einstein researchers were able to construct a network of gene interactions that contributes to the understanding of longevity. In particular, they found that the favorable variant of the gene CETP acts to buffer the harmful effects of the disease-causing gene Lp(a).

If future research finds that a single longevity gene buffers against several disease-causing genes, then drugs that mimic the action of the longevity gene could help protect against cardiovascular disease and other age-related diseases.

“This study shows that our approach, which was inspired by a theoretical model, can reveal underlying mechanisms that explain seemingly paradoxical observations in a complex trait such as aging,” says Dr. Bergman. “So we’re hopeful that this method could also help uncover the mechanisms—the gene interactions—responsible for other complex biological traits such as cancer and diabetes.”

Meanwhile, the Einstein researchers are greatly expanding their longevity research: From the 66 genetic markers examined in this study, they are now using a high-throughput technology that allows them to assay one million genetic markers throughout the human genome. The goal is to find additional genetic networks that are involved in the process of aging.

Andrew Hyde | alfa
Further information:
http://www.ploscompbiol.org

Further reports about: Ashkenazi Bergman Einstein Trait genetic marker longevity

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>