Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein Researchers Use Novel Approach to Uncover Genetic Components of Aging

27.08.2007
People who live to 100 or more are known to have just as many—and sometimes even more—harmful gene variants compared with younger people.

Now, scientists at the Albert Einstein College of Medicine of Yeshiva University have discovered the secret behind this paradox: favorable “longevity” genes that protect very old people from the bad genes’ harmful effects. The novel method used by the researchers could lead to new drugs to protect against age-related diseases.

“We hypothesized that people living to 100 and beyond must be buffered by genes that interact with disease-causing genes to negate their effects,” says Dr. Aviv Bergman, a professor in the departments of pathology and neuroscience at Einstein and senior author of the study, which appears in the August 31 issue of PLoS Computational Biology.

To test this hypothesis, Dr. Bergman and his colleagues examined individuals enrolled in Einstein’s Longevity Genes Project, initiated in 1998 to investigate longevity genes in a selected population: Ashkenazi (Eastern European) Jews. They are descended from a founder group of just 30,000 or so people. So they are relatively genetically homogenous, which simplifies the challenge of associating traits (in this case, age-related diseases and longevity) with the genes that determine them.

Participating in the study were 305 Ashkenazi Jews more than 95 years old and a control group of 408 unrelated Ashkenazi Jews. (Centenarians are so rare in human populations—only one in 10,000 people live to be 100—that “longevity” genes probably wouldn’t turn up in a typical control group. Longevity runs in families, so 430 children of centenarians were added to the control group to increase the number of favorable genes.)

All participants were grouped into cohorts representing each decade of lifespan from the 50’s on up. Using DNA samples, the researchers determined the prevalence in each cohort of 66 genetic markers present in 36 genes associated with aging.

As expected, some disease-related gene variants were as prevalent or even more prevalent in the oldest cohorts of Ashkenazi Jews than in the younger ones. And as Dr. Bergman had predicted, genes associated with longevity also became more common in each succeeding cohort. “These results indicate that the frequency of deleterious genotypes may increase among people who live to extremely old ages because their protective genes allow these disease-related genes to accumulate,” says Dr. Bergman.

The Einstein researchers were able to construct a network of gene interactions that contributes to the understanding of longevity. In particular, they found that the favorable variant of the gene CETP acts to buffer the harmful effects of the disease-causing gene Lp(a).

If future research finds that a single longevity gene buffers against several disease-causing genes, then drugs that mimic the action of the longevity gene could help protect against cardiovascular disease and other age-related diseases.

“This study shows that our approach, which was inspired by a theoretical model, can reveal underlying mechanisms that explain seemingly paradoxical observations in a complex trait such as aging,” says Dr. Bergman. “So we’re hopeful that this method could also help uncover the mechanisms—the gene interactions—responsible for other complex biological traits such as cancer and diabetes.”

Meanwhile, the Einstein researchers are greatly expanding their longevity research: From the 66 genetic markers examined in this study, they are now using a high-throughput technology that allows them to assay one million genetic markers throughout the human genome. The goal is to find additional genetic networks that are involved in the process of aging.

Andrew Hyde | alfa
Further information:
http://www.ploscompbiol.org

Further reports about: Ashkenazi Bergman Einstein Trait genetic marker longevity

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>