Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All Eukaryotic Kinases Share One Common Set of Substrates

22.08.2007
Kinase mediated phosphorylation is generally recognised as the major regulator of virtually all metabolic activities in eukaryotic cells including proliferation, gene expression, motility, vesicular transport and programmed cell death.

Dysregulation of protein phosphorylation plays a major role in many diseases such as cancer and neurodegenerative disorders. In addition, the elucidation of many kinase cascades has proved pivotal for understanding and manipulating cellular behaviour in a variety of divergent eukaryotes.

Within these organisms a wide rage of kinases has been defined. The human genome contains over 500 protein kinase genes, whereas the genome of a small plant like Arabidopsis thaliana, the mouse-ear cress, contains nearly 1,000. Despite this diversity, a team led by Maikel Peppelenbosch, PhD, a professor of Cell Biology at the University Medical Center in Groningen, the Netherlands, has established that all eukaryotic kinases share a common set of substrates, nine amino acid segments shared by all proteins that are known to be phosphorylated.

The team’s work is to be published in the online, open-access journal PLoS ONE on August 22nd.

... more about:
»Kinase »eukaryote »eukaryotic »substrates

Using a peptide array, the investigators tested all kinase substrates described in the PhosphoBase phosphorylation database. They incubated them with radio actively labelled ATP as a source of phosphate, and lysates (cell content) of two species of yeast (Candida albicans and Pichia pastoris), a fungus (Fusarium solani), a plant (Triticum aeastivum, wheat), a fruit fly (Drosophila melanogaster), a mouse (Mus musculus), and man (Homo sapiens) as a source of kinases. Their results show that the large diversity of kinases tested is contrasted by a very small diversity in the substrates that are sensitive to them.

These results indicate that, although probably thousands of different kinases have developed during the 2.4 billion years of eukaryotic evolution, they show no significant functional difference. Furthermore, the results suggest the presence of a set of kinase substrates in an ancestral eukaryote that has remained unchanged in eukaryotic life, so the earliest eukaryotes may have been less ‘primitive’ than generally thought.

Since drugs targeting protein kinases are promising for the therapeutic treatment of a host of different diseases, this result may prove to be useful in the testing of such drugs.

The study was funded by the Netherlands Organization for Scientific Research (NOW). Other researchers involved were Sander H. Diks, Kaushal Parikh, and Marijke van der Sijde at the University Medical Center Groningen, Groningen, Jos Joore at Pepscan Presto BV, Lelystad, and Tita Ritsema at the Department of Phytopathology, Utrecht University, Utrecht, all in the Netherlands.

Accordingly, drugs targeting protein kinases are promising avenues for the therapeutic treatment of many different diseases.

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0000777

Further reports about: Kinase eukaryote eukaryotic substrates

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>