Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frog plus frying pan equals better antibiotic

21.08.2007
By creating "Teflon" versions of natural antibiotics found in frog skin, a research team led by biological chemist E. Neil Marsh has made the potential drugs better at thwarting bacterial defenses, an improvement that could enhance their effectiveness. Marsh will discuss the work Aug. 20 at the 234th national meeting of the American Chemical Society in Boston.

Marsh and collaborators work with compounds called antimicrobial peptides (AMPs), which are produced by virtually all animals, from insects to frogs to humans. AMPs are the immune system's early line of defense, battling microbes at the first places they try to penetrate: skin, mucous membranes and other surfaces. They're copiously produced in injured or infected frog skin, for instance, and the linings of the human respiratory and gastrointestinal tracts also crank out the short proteins in response to invading pathogens. In addition to fighting bacteria, AMPs attack viruses, fungi and even cancer cells, so drugs designed to mimic them could have widespread medical applications.

Scientists have been interested in exploiting these natural antibiotics since their discovery in the 1980s, but they haven't been able to overcome some limitations. In particular, AMPs are easily broken down by protein-degrading enzymes (proteases) that are secreted by bacteria and are also naturally present in the body. Increasing the concentration of AMPs in an effort to get around that problem can cause toxic side effects, such as the destruction of red blood cells---those critical carriers of oxygen in the bloodstream. That seems to happen because sticky parts of the AMP molecule interact with the cell membrane in a harmful way.

Marsh had the idea of replacing sticky portions of the peptides with nonstick analogs. His inspiration came from the kitchen as much as the chemistry lab: nonstick cookware is coated with fluorinated polymers, plastic-like compounds composed of chains of carbon atoms completely surrounded by fluorine atoms. The fluorine not only makes Teflon slippery, it also makes the coating inert to almost every known chemical.

... more about:
»AMP »antibiotic »fluorinated

When Marsh and co-workers swapped sticky parts of their AMP molecule with nonstick, fluorinated versions, the molecules became much more resistant to proteases.

"The difference was quite striking," said Marsh, a U-M professor of chemistry. "When we treated them with purified proteases, the nonfluorinated AMPs were all degraded within 30 minutes. Under the same conditions, the fluorinated AMP was completely intact after 10 hours. We think that should make them more effective, as they'll stay around longer in the body.

"We also showed that they seem to be at least as good at killing bacteria as their nonfluorinated counterparts, and for some bacteria they're actually significantly better."

Next, the researchers plan experiments to learn whether Teflon AMPs are also less toxic than their stickier equivalents. If they are, and if further studies continue to point to their promise, eventually producing large enough quantities of fluorinated AMPs for clinical trials should be quite feasible, Marsh said.

Though the research now has obvious practical applications, it started as an exploration in basic science.

"We were just interested in translating useful properties of man-made materials into biological molecules," Marsh said. "But fairly immediately we saw the potential for applying our fundamental science to a very important clinical problem, which is the way that more and more bacteria are becoming resistant to more and more conventional antibiotics."

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.chemistry.org
http://www.ns.umich.edu/htdocs/public/experts/ExpDisplay.php?ExpID=1026

Further reports about: AMP antibiotic fluorinated

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>