Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Milestone in the regeneration of brain cells: Supportive cells generate new nerve cells

The research group of Prof. Dr. Magdalena Götz at the Institute of Stem Cell Research of the GSF – National Research Centre for Environment and Health, and the Ludwig Maximilians University, Munich, has achieved an additional step for the potential replacement of damaged brain cells after injury or disease: functional nerve cells can be generated from astroglia, a type of supportive cells in the brain by means of special regulator proteins.

The majority of cells in the human brain are not nerve cells but star-shaped glia cells, the so called “astroglia”. “Glia means “glue”, explains Götz. “As befits their name, until now these cells have been regarded merely as a kind of “putty” keeping the nerve cells together.

A couple of years ago, the research group had been already able to prove that these glia cells function as stem cells during development. This means that they are able to differentiate into functional nerve cells. However, this ability gets lost in later phases of development, so that even after an injury to the adult brain glial cells are unable to generate any more nerve cells.

In order to be able to reverse this development, the team studied what molecular switches are essential for the creation of nerve cells from glial cells during development. These regulator proteins are introduced into glial cells from the postnatal brain, which indeed respond by switching on the expression of neuronal proteins.

... more about:
»Brain »generate »glia »glia cells »means »nerve cells

In his current work, Dr. Benedikt Berninger, was now able to show that single regulator proteins are quite sufficient to generate new functional nerve cells from glia cells. The transition from glia-to-neuron could be followed live at a time-lapse microscope. It was shown that glia cells need some days for the reprogramming until they take the normal shape of a nerve cell. “These new nerve cells then have also the typical electrical properties of normal nerve cells”, emphasises Berninger. “We could show this by means of electrical recordings”.

“Our results are very encouraging, because the generation of correctly functional nerve cells from postnatal glia cells is an important step on the way to be able to replace functional nerve cells also after injuries in the brain,” underlines Magdalena Götz.

Michael van den Heuvel | alfa
Further information:

Further reports about: Brain generate glia glia cells means nerve cells

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>