Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low levels of key protein may indicate pancreatic cancer risk

17.08.2007
A protein that dwindles in response to obesity and a sedentary lifestyle may one day help doctors predict which people are at increased risk for pancreatic cancer, new research by Dana-Farber Cancer Institute and collaborating scientists indicates.

In a report in the Aug. 15 issue of Cancer Research, the investigators found that, in a large study group, people with the lowest blood levels of a protein called IGFBP-1 were twice as likely to develop pancreatic cancer as those with higher levels. Though much work remains to determine if the protein -- whose acronym stands for insulin-like growth factor binding protein-1 -- is a reliable indicator of pancreatic cancer risk, the finding adds to the scientific understanding of how the disease develops.

"The levels of insulin and another circulating hormone, insulin-like growth factor or IGF, are modified by obesity and sedentary lifestyle, and there is evidence that these hormones may stimulate the growth of pancreatic cancer cells," said the study's lead author, Brian Wolpin, MD, of Dana-Farber. "When IGF binds to proteins like IGFBP-1, there may be less IGF available to bind to pancreatic cancer cells and promote their growth. We wanted to determine whether IGFBP-1 levels in the blood were associated with pancreatic cancer risk."

The investigators measured circulating IGFBP-1 levels in a select group of participants in four large, ongoing health studies: the Health Professionals Follow-up Study, the Nurses' Health Study, the Physicians' Health Study, and the Women's Health Initiative. They collected blood samples from 573 participants and, four or more years later, checked IGFBP-1 levels in the samples of 144 people who developed pancreatic cancer and 429 who did not.

They found that the quarter of the group whose IGFBP-1 levels were lowest had twice the risk of developing pancreatic cancer of those in the top three quarters. The connection became even stronger over time: Among cases diagnosed at least eight years after blood collection, those in the bottom quarter of IGFBP-1 levels had nearly three-and-a-half times the pancreatic cancer risk of those in the upper quarters.

The risk may be elevated because higher amounts of IGFBP-1 are able to "soak up" more IGF, leaving less available to spur pancreatic cancer cell growth, or because IGFBP-1 has some cancer-blocking properties of its own, said Wolpin, who is also an instructor in medicine at Harvard Medical School. Another possibility is that other molecules may be involved, for which IGFBP-1 acts as an intermediary.

"It's known that a variety of proteins are affected by obesity and sedentary lifestyle," he added. "Studies are exploring whether a subset of these may play a role in the risk of developing pancreatic cancer. More research is also needed on how alterations in insulin and proteins in the IGF family alter the risk of this difficult disease."

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

Further reports about: Cancer IGF IGFBP-1 blood develop pancreatic pancreatic cancer

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>