Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low levels of key protein may indicate pancreatic cancer risk

17.08.2007
A protein that dwindles in response to obesity and a sedentary lifestyle may one day help doctors predict which people are at increased risk for pancreatic cancer, new research by Dana-Farber Cancer Institute and collaborating scientists indicates.

In a report in the Aug. 15 issue of Cancer Research, the investigators found that, in a large study group, people with the lowest blood levels of a protein called IGFBP-1 were twice as likely to develop pancreatic cancer as those with higher levels. Though much work remains to determine if the protein -- whose acronym stands for insulin-like growth factor binding protein-1 -- is a reliable indicator of pancreatic cancer risk, the finding adds to the scientific understanding of how the disease develops.

"The levels of insulin and another circulating hormone, insulin-like growth factor or IGF, are modified by obesity and sedentary lifestyle, and there is evidence that these hormones may stimulate the growth of pancreatic cancer cells," said the study's lead author, Brian Wolpin, MD, of Dana-Farber. "When IGF binds to proteins like IGFBP-1, there may be less IGF available to bind to pancreatic cancer cells and promote their growth. We wanted to determine whether IGFBP-1 levels in the blood were associated with pancreatic cancer risk."

The investigators measured circulating IGFBP-1 levels in a select group of participants in four large, ongoing health studies: the Health Professionals Follow-up Study, the Nurses' Health Study, the Physicians' Health Study, and the Women's Health Initiative. They collected blood samples from 573 participants and, four or more years later, checked IGFBP-1 levels in the samples of 144 people who developed pancreatic cancer and 429 who did not.

They found that the quarter of the group whose IGFBP-1 levels were lowest had twice the risk of developing pancreatic cancer of those in the top three quarters. The connection became even stronger over time: Among cases diagnosed at least eight years after blood collection, those in the bottom quarter of IGFBP-1 levels had nearly three-and-a-half times the pancreatic cancer risk of those in the upper quarters.

The risk may be elevated because higher amounts of IGFBP-1 are able to "soak up" more IGF, leaving less available to spur pancreatic cancer cell growth, or because IGFBP-1 has some cancer-blocking properties of its own, said Wolpin, who is also an instructor in medicine at Harvard Medical School. Another possibility is that other molecules may be involved, for which IGFBP-1 acts as an intermediary.

"It's known that a variety of proteins are affected by obesity and sedentary lifestyle," he added. "Studies are exploring whether a subset of these may play a role in the risk of developing pancreatic cancer. More research is also needed on how alterations in insulin and proteins in the IGF family alter the risk of this difficult disease."

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

Further reports about: Cancer IGF IGFBP-1 blood develop pancreatic pancreatic cancer

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>