Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low levels of key protein may indicate pancreatic cancer risk

17.08.2007
A protein that dwindles in response to obesity and a sedentary lifestyle may one day help doctors predict which people are at increased risk for pancreatic cancer, new research by Dana-Farber Cancer Institute and collaborating scientists indicates.

In a report in the Aug. 15 issue of Cancer Research, the investigators found that, in a large study group, people with the lowest blood levels of a protein called IGFBP-1 were twice as likely to develop pancreatic cancer as those with higher levels. Though much work remains to determine if the protein -- whose acronym stands for insulin-like growth factor binding protein-1 -- is a reliable indicator of pancreatic cancer risk, the finding adds to the scientific understanding of how the disease develops.

"The levels of insulin and another circulating hormone, insulin-like growth factor or IGF, are modified by obesity and sedentary lifestyle, and there is evidence that these hormones may stimulate the growth of pancreatic cancer cells," said the study's lead author, Brian Wolpin, MD, of Dana-Farber. "When IGF binds to proteins like IGFBP-1, there may be less IGF available to bind to pancreatic cancer cells and promote their growth. We wanted to determine whether IGFBP-1 levels in the blood were associated with pancreatic cancer risk."

The investigators measured circulating IGFBP-1 levels in a select group of participants in four large, ongoing health studies: the Health Professionals Follow-up Study, the Nurses' Health Study, the Physicians' Health Study, and the Women's Health Initiative. They collected blood samples from 573 participants and, four or more years later, checked IGFBP-1 levels in the samples of 144 people who developed pancreatic cancer and 429 who did not.

They found that the quarter of the group whose IGFBP-1 levels were lowest had twice the risk of developing pancreatic cancer of those in the top three quarters. The connection became even stronger over time: Among cases diagnosed at least eight years after blood collection, those in the bottom quarter of IGFBP-1 levels had nearly three-and-a-half times the pancreatic cancer risk of those in the upper quarters.

The risk may be elevated because higher amounts of IGFBP-1 are able to "soak up" more IGF, leaving less available to spur pancreatic cancer cell growth, or because IGFBP-1 has some cancer-blocking properties of its own, said Wolpin, who is also an instructor in medicine at Harvard Medical School. Another possibility is that other molecules may be involved, for which IGFBP-1 acts as an intermediary.

"It's known that a variety of proteins are affected by obesity and sedentary lifestyle," he added. "Studies are exploring whether a subset of these may play a role in the risk of developing pancreatic cancer. More research is also needed on how alterations in insulin and proteins in the IGF family alter the risk of this difficult disease."

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

Further reports about: Cancer IGF IGFBP-1 blood develop pancreatic pancreatic cancer

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>