Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AIDS interferes with stem cells in the brain

17.08.2007
Discovery links mechanism for HIV/AIDS dementia, possibly other neurological disorders, with known cancer 'checkpoint' pathway

A prominent problem in AIDS is a form of dementia that robs one’s ability to concentrate and perform normal movements. Scientists at the Burnham Institute for Medical Research (Burnham) have discovered how HIV/AIDS disrupts the normal replication of stem cells in the adult brain, preventing new nerve cells from forming. Drs. Stuart Lipton, Marcus Kaul, Shu-ichi Okamoto and their colleagues uncovered a novel molecular mechanism that inhibits stem cell proliferation and that could possibly be triggered in other neurodegenerative diseases as well. These findings were made available to medical researchers today through priority publication online by the journal Cell Stem Cell.

A normally functioning adult human brain has the ability to partially replenish or repair itself through neurogenesis, the proliferation and development of adult neural progenitor/stem cells (aNPCs) into new nerve cells. Neurogenesis can take place only within specific regions of the brain, such as the dentate gyrus of the hippocampus.

The hippocampus is the brain’s central processing unit, critical to learning and memory. aNPCs differentiate, adapt, and assimilate into existing neural circuits and mature with guidance from neurotransmitters, the chemical substances that nerve cells use to communicate with one another. The brain’s self-renewal through neurogenesis is impaired in AIDS dementia, Alzheimer’s, Huntington’s, and other neurodegenerative diseases, as evidenced by a greatly reduced number of aNPCs in brain tissue from individuals suffering from these diseases. The Burnham team focused on the determining the effect of a protein associated with AIDS, called HIV/gp120, which plays a key role in the pathogenesis of AIDS dementia.

In initial work with cell cultures in Petri dishes, the researchers methodically ruled out the possibility that HIV/gp120 would be inducing the death of stem cells and determined instead that HIV/gp120 was acting by inhibiting stem cell proliferation. Next, they confirmed these results in a special mouse strain bred to express HIV/gp120 in its brain. This mouse model for AIDS dementia mimics several features of the disease process found in humans. They observed a significant decrease in the number of proliferating stem cells in the brains of HIV/gp120-mice compared with similar tissue from normal, wild-type mice.

HIV/gp120 is known to interact with two receptors, called chemokine receptors, which are expressed on aNPCs. The researchers discovered that the same two receptors were targeted by HIV/gp120 sourced from either mouse or human brain tissue.

In search of a mechanism behind the finding that HIV/gp120 reduced proliferation of aNPCs, the scientists studied the effect of the protein on the cell cycle. Cells undergo seasons or cycles, known as G1, S, G2, and M (for mitosis, or cell division). They found that cells exposed to HIV/gp120 got stuck in the G1 or resting phase, and that the cell cycle was arrested.

Cell cycle is studied intensively by cancer researchers who have delineated certain “checkpoint” pathways that can jam cell proliferation, one of the key behaviors of cancer. Checkpoint pathways are overcome by cancers when they fool the body’s normal machinery into producing more cancerous cells. With dementia, it turns out that the opposite is true: the Burnham team discovered that HIV/AIDS could co-opt the checkpoint pathway to prevent stem cells in the brain from dividing and multiplying.

One such checkpoint pathway is modulated by an enzyme called p38 mitogen-activated protein kinase (MAPK), whose activity is known to disrupt the cell cycle. In mature nerve cells, the Burnham team had previously shown that HIV/gp120 activates the p38 MAPK pathway to contribute to cell death. Lipton and colleagues now report that the p38 MAPK pathway is also the mechanism underlying decreased stem cell proliferation in the brain associated with HIV/AIDS. Under experimental conditions, they were able to neutralize the p38 MAPK pathway and restore stem cell proliferation.

“We show for the first time how HIV/AIDS inhibits proliferation of neural stem cells and prevents the formation of new nerve cells in the adult brain,” said Dr. Stuart Lipton, Director of Burnham’s Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research.

“The fact that the mechanism of action involves the p38 MAPK enzyme is fortuitous because drugs to combat that pathway are being tested for other diseases. If they prove effective, they might also work to protect the brain. Thus, this study offers real hope for combating the bad effects of HIV/AIDS on stem cells in the brain.” Lipton went on to state, “It will be important to see if HIV/AIDS acts similarly on stem cells for other organs in the human body, as this may impact on the disease process as a whole.”

Nancy Beddingfield | EurekAlert!
Further information:
http://www.burnham.org

Further reports about: Aids HIV/AIDS HIV/gp120 Lipton MAPK Stem aNPCs dementia nerve cells neurodegenerative disease p38 p38 MAPK pathway proliferation

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>