Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AIDS interferes with stem cells in the brain

17.08.2007
Discovery links mechanism for HIV/AIDS dementia, possibly other neurological disorders, with known cancer 'checkpoint' pathway

A prominent problem in AIDS is a form of dementia that robs one’s ability to concentrate and perform normal movements. Scientists at the Burnham Institute for Medical Research (Burnham) have discovered how HIV/AIDS disrupts the normal replication of stem cells in the adult brain, preventing new nerve cells from forming. Drs. Stuart Lipton, Marcus Kaul, Shu-ichi Okamoto and their colleagues uncovered a novel molecular mechanism that inhibits stem cell proliferation and that could possibly be triggered in other neurodegenerative diseases as well. These findings were made available to medical researchers today through priority publication online by the journal Cell Stem Cell.

A normally functioning adult human brain has the ability to partially replenish or repair itself through neurogenesis, the proliferation and development of adult neural progenitor/stem cells (aNPCs) into new nerve cells. Neurogenesis can take place only within specific regions of the brain, such as the dentate gyrus of the hippocampus.

The hippocampus is the brain’s central processing unit, critical to learning and memory. aNPCs differentiate, adapt, and assimilate into existing neural circuits and mature with guidance from neurotransmitters, the chemical substances that nerve cells use to communicate with one another. The brain’s self-renewal through neurogenesis is impaired in AIDS dementia, Alzheimer’s, Huntington’s, and other neurodegenerative diseases, as evidenced by a greatly reduced number of aNPCs in brain tissue from individuals suffering from these diseases. The Burnham team focused on the determining the effect of a protein associated with AIDS, called HIV/gp120, which plays a key role in the pathogenesis of AIDS dementia.

In initial work with cell cultures in Petri dishes, the researchers methodically ruled out the possibility that HIV/gp120 would be inducing the death of stem cells and determined instead that HIV/gp120 was acting by inhibiting stem cell proliferation. Next, they confirmed these results in a special mouse strain bred to express HIV/gp120 in its brain. This mouse model for AIDS dementia mimics several features of the disease process found in humans. They observed a significant decrease in the number of proliferating stem cells in the brains of HIV/gp120-mice compared with similar tissue from normal, wild-type mice.

HIV/gp120 is known to interact with two receptors, called chemokine receptors, which are expressed on aNPCs. The researchers discovered that the same two receptors were targeted by HIV/gp120 sourced from either mouse or human brain tissue.

In search of a mechanism behind the finding that HIV/gp120 reduced proliferation of aNPCs, the scientists studied the effect of the protein on the cell cycle. Cells undergo seasons or cycles, known as G1, S, G2, and M (for mitosis, or cell division). They found that cells exposed to HIV/gp120 got stuck in the G1 or resting phase, and that the cell cycle was arrested.

Cell cycle is studied intensively by cancer researchers who have delineated certain “checkpoint” pathways that can jam cell proliferation, one of the key behaviors of cancer. Checkpoint pathways are overcome by cancers when they fool the body’s normal machinery into producing more cancerous cells. With dementia, it turns out that the opposite is true: the Burnham team discovered that HIV/AIDS could co-opt the checkpoint pathway to prevent stem cells in the brain from dividing and multiplying.

One such checkpoint pathway is modulated by an enzyme called p38 mitogen-activated protein kinase (MAPK), whose activity is known to disrupt the cell cycle. In mature nerve cells, the Burnham team had previously shown that HIV/gp120 activates the p38 MAPK pathway to contribute to cell death. Lipton and colleagues now report that the p38 MAPK pathway is also the mechanism underlying decreased stem cell proliferation in the brain associated with HIV/AIDS. Under experimental conditions, they were able to neutralize the p38 MAPK pathway and restore stem cell proliferation.

“We show for the first time how HIV/AIDS inhibits proliferation of neural stem cells and prevents the formation of new nerve cells in the adult brain,” said Dr. Stuart Lipton, Director of Burnham’s Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research.

“The fact that the mechanism of action involves the p38 MAPK enzyme is fortuitous because drugs to combat that pathway are being tested for other diseases. If they prove effective, they might also work to protect the brain. Thus, this study offers real hope for combating the bad effects of HIV/AIDS on stem cells in the brain.” Lipton went on to state, “It will be important to see if HIV/AIDS acts similarly on stem cells for other organs in the human body, as this may impact on the disease process as a whole.”

Nancy Beddingfield | EurekAlert!
Further information:
http://www.burnham.org

Further reports about: Aids HIV/AIDS HIV/gp120 Lipton MAPK Stem aNPCs dementia nerve cells neurodegenerative disease p38 p38 MAPK pathway proliferation

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>