Birds learn to fly with a little help from their ancestors

It is widely known that birds learn to fly through practice, gradually refining their innate ability into a finely tuned skill. However, according to Dr Jim Stone from the University of Sheffield´s Department of Psychology, these skills may be easy to refine because of a genetically specified latent memory for flying.

Dr Stone used simple models of brains called artificial neural networks and computer simulations to test his theory. He discovered that learning in previous generations indirectly induces the formation of a latent memory in the current generation and therefore decreases the amount of learning required. These effects are especially pronounced if there is a large biological 'fitness cost' to learning, where biological fitness is measured in terms of the number of offspring each individual has.

The beneficial effects of learning also depend on the unusual form of information storage in neural networks. Unlike computers, which store each item of information in a specific location in the computer's memory chip, neural networks store each item distributed over many neuronal connections. If information is stored in this way then evolution is accelerated, explaining how complex motor skills, such as nest building and hunting skills, are acquired by a combination of innate ability and learning over many generations.

Dr Stone said: “This new theory has its roots in ideas proposed by James Baldwin in 1896, who made the counter-intuitive argument that learning within each generation could guide evolution of innate behaviour over future generations. Baldwin was right, but in ways more subtle than he could have imagined because concepts such as artificial neural networks and distributed representations were not known in his time.”

Notes for Editors: Results are reported in: Stone JV, “Distributed Representations Accelerate Evolution of Adaptive Behaviours”, PLoS Computational Biology, 2007 (in press).

For further information please contact: Lindsey Bird, Media Relations Officer on 0114 2225338 or email l.bird@shef.ac.uk

Media Contact

Lindsey Bird EurekAlert!

More Information:

http://www.sheffield.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors