Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bursts of waves drive immune system 'soldiers' toward invaders

14.08.2007
Scientists have discovered that torrents of microscopic waves propel white blood cells toward invading microbes. The discovery - recorded on videotape -- holds the potential for better understanding and treatment of cancer and heart disease.

Visible only under a very high-resolution light microscope, the dynamic waves are made of a signaling protein that directs cell movement. This protein and a second key player were already known to trigger cells to move, but their interaction to generate the self-sustaining waves has now been revealed.

"Seeing the wavelike dynamics of this protein, Hem-1, for the first time was easily the most instantly thrilling and illuminating finding in my scientific career," says Orion Weiner, PhD, of the University of California, San Francisco, who led the scientific team. "It immediately suggested how this protein might be organizing cell movement - an idea that our subsequent experiments validated.

"We never expected to see this sort of complex behavior within cells, but in retrospect it is an absolutely ingenious way to organize cell movement. We're getting our first glimpses that take us beyond knowing that this protein is important for cell motility to learning how it might organize the complex choreography of cell movement."

... more about:
»Cycle »Hem-1 »cell movement »circuit »generate »scientists

The videotape of the unsuspected action shows wave upon wave advancing like a series of exploding fireworks. The novel behavior can be viewed at cvri.ucsf.edu/~weiner.

The research findings are reported in the August 13, 2007 online edition of the journal "Public Library of Science (PLoS) Biology." Lead author is Weiner, who is assistant professor of biochemistry at UCSF.

Because the same kind of components scrutinized in the new research also drive cancer cell metastasis, the finding may lead to strategies to block cancer growth. Similarly, faulty regulation of white blood cell movement plays a role in heart attack - another promising target for applying the new insights of the regulation of cell movement, the authors say.

White blood cells, or neutrophils, are the body's first line of defense against potentially harmful microbes, and are one of the swiftest cells in the body. The wave action that speeds them along is generated by the same kind of three-part circuit that fires electrical signals along a neuron or prods the heart to beat, the researchers observe.

Videotaping allowed the scientists to watch as wave upon wave of the Hem-1 protein push neutrophils toward a chemical signal made by invading microbes. The researchers fluorescently tagged Hem-1 to view its dynamic propulsive power under the microscope.

Self-generating waves of Hem-1 control the pattern of assembly of building blocks of a second protein, actin. This protein physically contacts the cell membrane and prods it forward. But actin is not only an output of Hem-1 action; it also appears to eliminate the Hem-1 that has assembled it, the new research shows. The scientists think that this cycle of Hem-1 propulsion and annihilation is likely to produce the series of waves seen under the microscope.

The cell-propelling circuit contains a third component that makes it self-sustaining. The researchers found evidence that before each Hem-1 protein is eliminated, it recruits an additional Hem-1 right "next door." As each Hem-1 succumbs, a new one appears - but only on one side. Weiner thinks the structure of actin physically blocks Hem-1 from recruiting its daughter Hem-1 on one side, so Hem-1 is sequentially added only in one direction. This determines the direction of cell movement.

Weiner likens it to a Lego tower on its side. "If you kept adding blocks to one end and removing them from the other, you would have a moving tower that was the same size but kept adding new material. This is very similar to what is going on in a Hem-1 wave," he says.

The Hem-1 recruitment assures the cycle will continue. The cycle, or circuit, of activation, recruitment and inhibition, as it is called, can continue without "orders" from another part of the cell, the scientists report.

"One of the things that I find fascinating about these waves is how relatively simple patterns of protein interaction can generate very complex behaviors," says Weiner. "Evolution has found the same solution to generating waves again and again even with completely different molecules, and at different scales of space and time -- encouraging for those of us who want to uncover general organizing principles in biology."

Weiner is an investigator in both the UCSF Cardiovascular Research Institute and the California Institute for Quantitative Biosciences, or QB3, headquartered at UCSF.

Weiner initiated the research as a postdoctoral fellow in the lab of Marc Kirschner, PhD, professor and chair of systems biology at Harvard Medical School. Kirschner is a co-author on the paper.

The cycle the scientists studied is very similar in concept to the circuit that generates neuronal conduction, the beating of the heart, and many other waves in biology, according to Weiner.

"All of these use a self-activating signal that plants the seeds for its own destruction, even while it is progressing. This results in a wave that moves undiminished because of the self-activation, and in one direction, because of the inhibition it leaves in its wake," he says.

The scientists observed the Hem-1 activation of actin assembly and actin's inhibition of Hem-1 accumulation. The "recruitment" component was not directly observed, but is consistent with their observations and experiments.

In the research, the team used the fluorescently tagged Hem-1 to determine whether the protein participated in the wave action, or was the wave itself.

Using optical tricks to label specific pools of Hem-1, they found that molecules of Hem-1 don't move, but pass information between molecules to generate a wave.

The research is now focusing on how external signals influence this wave generator to guide the cells. They also want to learn if the wave action they have discovered in neutrophils also controls movement and shapes changes in other cells and organisms.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu

Further reports about: Cycle Hem-1 cell movement circuit generate scientists

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>