Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Microscopy to Nanoscopy

10.08.2007
Photoswitchable rhodamine amides for high-resolution optical 3D far-field microscopy

Layer-by-layer light microscopic nanoscale images of cells and without having to prepare thin sections?

A team led by Stefan Hell and Mariano Bossi at the Max Planck Intstitute for Biophysical Chemistry in Göttingen is now leading the way with a technique called optical 3D far-field microscopy—with nanoscale resolution, good signal-to-noise ratio, and relatively short exposure times.

The secret of their success lies in special photoswitchable fluorescence dyes, the researchers report to the journal Angewandte Chemie. These rhodamine amides make it possible to obtain highly resolved 3D images of transparent fluorescence-marked samples such as living cells.

... more about:
»Photon »amides »rhodamine »switched »wavelength

Until fairly recently, the resolution of light microscopes was limited by the wavelength of the light. This means that details finer than 200 nanometers (millionths of millimeters) cannot be observed. There are non-optical methods, such as electron microscopy, but light microscopy is still the only way to observe the interior of whole, or even living, cells. The use of fluorescent dyes makes it possible to selectively obtain images of individual cell components, for example, proteins. Today, the wavelength dogma is overcome.

Hell received the German Future Prize in 2006 for the first concept breaking the wavelength barrier the stimulated emission depletion (STED) microscope . Molecules are transferred from a “dark” (non-fluorescent) to a “bright” (fluorescent) excited energy state—with a spacial sharpness far beyond those 200 nanometers.

Now the german team is demonstrating the power of another concept. They use molecules that are not only transferred but can be “switched” from “fluorescent” to “non-fluorescent” and back. In contrast to the STED and other related methods of the team, only separate, isolated marker molecules are randomly switched on at the same time. Their fluorescence is registered, and then they get switched off again automatically. In this way, the simultaneously fluorescing (switched on) markers are farther apart from each other than the minimum distance that the microscope can resolve.

This is only possible using switchable molecules that emit many photons, one after the other, when switched on. If these photons are captured with a camera, the centers of the individual fluorescing dots can be distinguished. After the exposure, the molecule becomes dark again (switches off), allowing further, neighboring molecules to be photographed. This process is repeated many times, until many dots become a picture. The full distribution can be reconstructed—at a resolution not limited by the wavelength of light.

The researchers have now found a class of substances that fulfill all the requirements of this technique: rhodamine amides. At the core of these molecules lies a system of five rings. In this form, the compound is colorless and does not fluoresce. Irradiation with light induces an isomerization in which one of the rings is opened. This form of the molecule is red and can be excited several times.

Most importantly: rhodamine amides can be switched on by either a UV photon or two photons in the red part of the spectrum. This two-photon excitation can be focused onto a thin plane, which allows biological samples to be photographed layer by layer. The individual images can then be reconstructed into a single multilayer image. The resolution reached in the focal plane is far beyond the diffraction barrier (10–30 nm).

Author: Stefan W. Hell, Max-Planck-Institut für Biophysikalische Chemie, Göttingen (Germany), http://www.mpibpc.gwdg.de/abteilungen/200/

Title: Photochromic Rhodamines Provide Nanoscopy with Optical Sectioning

Angewandte Chemie International Edition 2007, 46, No. 33, 6266–6270, doi: 10.1002/anie.200702167

Stefan W. Hell | Angewandte Chemie
Further information:
http://www.mpibpc.gwdg.de/abteilungen/200/
http://pressroom.angewandte.org

Further reports about: Photon amides rhodamine switched wavelength

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Hot vibrating gases under the electron spotlight

12.12.2017 | Life Sciences

New silicon structure opens the gate to quantum computers

12.12.2017 | Information Technology

Using drones to estimate crop damage by wild boars

12.12.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>