Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESF EURYI award winner aims to stop cancer cells reading their own DNA

10.08.2007
A promising new line in anti-cancer therapy by blocking the molecular motors involved in copying genetic information during cell division is being pursued by young Dutch researcher Dr. Nynke Dekker in one of this year's EURYI award winning projects sponsored by the European Science Foundation (ESF) and the European Heads of Research Councils (EuroHORCS).

Dekker and her team are trying to stop tumor development by interfering with the molecular motors that copy DNA during cell division. This will cut off the genetic information flow that tumours need to grow, and could complement existing cancer therapies, while in the longer term bringing the promise of improved outcomes with greatly reduced side effects.

There are three primary ways of treating cancer at present, and these have fundamentally changed little in 30 years. In the case of solid tumours, surgery can be used to cut out the cancerous tissue, while radiation therapy can kill the malignant cells, and chemotherapy stops them dividing. Dekker's work is aiming towards a new generation of drugs that target cancer cells much more specifically than traditional chemotherapy, avoiding side effects such as temporary hair loss.

Dekker is focusing on an enzyme called Topoisomerase IB that plays a key role in some of the molecular motors involved in the processes of DNA and RNA copying during cell division. These are responsible for reading the genetic code and making sure it is encoded correctly in the daughter cell. In healthy cells it is important that this process works normally, but in cancer cells it is a natural target for disruptive therapy. "Specifically targeting these molecular motors in cancer cells would then prevent the cancer cells from growing into a larger tumor," said Dekker.

... more about:
»DNA »Dekker »EURYI »molecular motor »motors »therapy

This molecular copying machinery, constructed mostly out of proteins, in effect walks along the DNA double helix reading the genetic code so that it can be copied accurately into new DNA during division. Other components of the machinery are responsible for slicing and assembling the DNA itself. All of these are potential targets for anti-cancer therapy, providing it is possible to single out the tumor cells. Most existing chemotherapy targets all dividing cells, and the aim to find more sensitive techniques.

However Dekker's work is not just confined to cancer, having the broader goal within the ESF EURYI project of unraveling the underlying physical principles behind these molecular motors that operate at the nanometer scale to process and manipulate the information stored within the DNA and RNA of our cells. Dekker is exploiting a variety of new highly sensitive manipulation and imaging techniques capable of resolving single molecules. These include force spectroscopy, new forms of optical microscopy with greatly improved resolving power and field depth, as well as nanotechnologies. The research involves cross-disciplinary work among scientists in different fields with the long term goal of developing more precisely targeted molecular medicines for a variety of diseases involving disruption to normal cellular functions and not just cancer.

Dekker's work has already shown great promise, and she has been able to predict what effect certain antitumor drugs would have on the basis of her molecular insights, confirming her hypotheses in yeast cells. "Indeed the work with antitumor drugs is, as far as I know, the first experiment in which single-molecule experiments have resulted in a prediction for a cellular effect," said Dekker.

Dekker, a 36-year-old Dutch associate professor at the Technische Universiteit Delft in the Netherlands, is currently undertaking single-molecule studies of DNA and RNA and their interactions with proteins, integrated with nanotechnology where appropriate. She gained her PhD in physics at Harvard University, having graduated from Yale.

As well as being awarded multiple grants and fellowship programmes, Dr. Dekker is a member of the Council of the Biophysical Society, and of the Young Academy of the Royal Academy of Arts and Sciences. She is actively involved in conference organization at the interface of biology and physics. Her group's research has appeared in Nature and in The Proceedings of the National Academy, USA, among others.

The EURYI awards scheme, entering its fourth and final year, is designed to attract outstanding young scientists from around the world to create their own research teams at European research centres and launch potential world-leading research careers. Most awards are between EUR1,000,000 and EUR1,250,000, comparable in size to the Nobel Prize. Dekker will receive his award in Helsinki, Finland on 27 September 2007 with other 19 young researchers.

Thomas Lau | alfa
Further information:
http://www.esf.org
http://www.esf.org/activities/euryi/awards/2007/nynke-hester-dekker.html

Further reports about: DNA Dekker EURYI molecular motor motors therapy

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>