Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESF EURYI award winner aims to stop cancer cells reading their own DNA

10.08.2007
A promising new line in anti-cancer therapy by blocking the molecular motors involved in copying genetic information during cell division is being pursued by young Dutch researcher Dr. Nynke Dekker in one of this year's EURYI award winning projects sponsored by the European Science Foundation (ESF) and the European Heads of Research Councils (EuroHORCS).

Dekker and her team are trying to stop tumor development by interfering with the molecular motors that copy DNA during cell division. This will cut off the genetic information flow that tumours need to grow, and could complement existing cancer therapies, while in the longer term bringing the promise of improved outcomes with greatly reduced side effects.

There are three primary ways of treating cancer at present, and these have fundamentally changed little in 30 years. In the case of solid tumours, surgery can be used to cut out the cancerous tissue, while radiation therapy can kill the malignant cells, and chemotherapy stops them dividing. Dekker's work is aiming towards a new generation of drugs that target cancer cells much more specifically than traditional chemotherapy, avoiding side effects such as temporary hair loss.

Dekker is focusing on an enzyme called Topoisomerase IB that plays a key role in some of the molecular motors involved in the processes of DNA and RNA copying during cell division. These are responsible for reading the genetic code and making sure it is encoded correctly in the daughter cell. In healthy cells it is important that this process works normally, but in cancer cells it is a natural target for disruptive therapy. "Specifically targeting these molecular motors in cancer cells would then prevent the cancer cells from growing into a larger tumor," said Dekker.

... more about:
»DNA »Dekker »EURYI »molecular motor »motors »therapy

This molecular copying machinery, constructed mostly out of proteins, in effect walks along the DNA double helix reading the genetic code so that it can be copied accurately into new DNA during division. Other components of the machinery are responsible for slicing and assembling the DNA itself. All of these are potential targets for anti-cancer therapy, providing it is possible to single out the tumor cells. Most existing chemotherapy targets all dividing cells, and the aim to find more sensitive techniques.

However Dekker's work is not just confined to cancer, having the broader goal within the ESF EURYI project of unraveling the underlying physical principles behind these molecular motors that operate at the nanometer scale to process and manipulate the information stored within the DNA and RNA of our cells. Dekker is exploiting a variety of new highly sensitive manipulation and imaging techniques capable of resolving single molecules. These include force spectroscopy, new forms of optical microscopy with greatly improved resolving power and field depth, as well as nanotechnologies. The research involves cross-disciplinary work among scientists in different fields with the long term goal of developing more precisely targeted molecular medicines for a variety of diseases involving disruption to normal cellular functions and not just cancer.

Dekker's work has already shown great promise, and she has been able to predict what effect certain antitumor drugs would have on the basis of her molecular insights, confirming her hypotheses in yeast cells. "Indeed the work with antitumor drugs is, as far as I know, the first experiment in which single-molecule experiments have resulted in a prediction for a cellular effect," said Dekker.

Dekker, a 36-year-old Dutch associate professor at the Technische Universiteit Delft in the Netherlands, is currently undertaking single-molecule studies of DNA and RNA and their interactions with proteins, integrated with nanotechnology where appropriate. She gained her PhD in physics at Harvard University, having graduated from Yale.

As well as being awarded multiple grants and fellowship programmes, Dr. Dekker is a member of the Council of the Biophysical Society, and of the Young Academy of the Royal Academy of Arts and Sciences. She is actively involved in conference organization at the interface of biology and physics. Her group's research has appeared in Nature and in The Proceedings of the National Academy, USA, among others.

The EURYI awards scheme, entering its fourth and final year, is designed to attract outstanding young scientists from around the world to create their own research teams at European research centres and launch potential world-leading research careers. Most awards are between EUR1,000,000 and EUR1,250,000, comparable in size to the Nobel Prize. Dekker will receive his award in Helsinki, Finland on 27 September 2007 with other 19 young researchers.

Thomas Lau | alfa
Further information:
http://www.esf.org
http://www.esf.org/activities/euryi/awards/2007/nynke-hester-dekker.html

Further reports about: DNA Dekker EURYI molecular motor motors therapy

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>