Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A unique arrangement for egg cell division

10.08.2007
Researchers uncover how the molecular machinery that mediates cell division in developing egg cells functions

Which genes are passed on from mother to child is decided very early on during the maturation of the egg cell in the ovary. In a cell division process that is unique to egg cells, half of the chromosomes are eliminated from the egg before it is fertilised. Using a powerful microscope, researchers from the European Molecular Biology Laboratory (EMBL) have now revealed how the molecular machinery functions that is responsible for chromosome reduction of egg cells in mice.

In the current issue of Cell they report the assembly of this machinery, which is very different from what happens in all other cells in the body. The process is likely conserved across species and the new insights might help shed light on defects occurring in human egg cell development.

The first step in the development of an egg cell is the division of its progenitor cell, the oocyte. Unlike other cells in the body, an oocyte does not divide equally to produce two identical daughter cells. Instead, it undergoes a reducing division, which halves its genetic material to generate a single egg cell with 23 instead of the normal 46 chromosomes in humans. It is crucial that the egg has half the normal set of chromosomes, because the second half is brought in by the sperm cell during fertilisation. The molecular apparatus that makes sure that the egg ends up with the correct number of chromosomes is a bipolar spindle consisting of protein filaments, called microtubules that are part of the cell’s skeleton. Spindle microtubules attach themselves to the chromosomes, separate them and pull one half out of the oocyte into a small polar body that is later discarded.

... more about:
»Division »EGG »MTOCs »centrosomes »microtubule »oocyte »spindle

“Microtubule spindles are found in all dividing cells. What is special about oocytes is that they lack specialised spindle-forming organelles, called centrosomes,” says Jan Ellenberg, Coordinator of the Gene Expression Unit at EMBL, “all other cells contain two centrosomes from where the microtubules originate. They predetermine the bipolar structure of the spindle that is essential to extrude exactly half of the chromosomes outside of the egg. For a long time we did not understand how mammalian oocytes could assemble a bipolar spindle without such centrosomes.”

Tracking spindle assembly over time with a high resolution microscope in live mouse oocytes, Ellenberg and his PhD student Melina Schuh found that the missing centrosomes are replaced by a flexible system of many small microtubule organising centres (MTOCs) in oocytes. Like centrosomes, these MTOCs serve as platforms from which microtubules grow, but they are not permanent structures. MTOCs only form when the division is about to start and accumulate in the cell’s centre. There, the around 80 individual MTOCs start interacting in a tug-of-war of pulling and pushing each other. This ultimately leads to a self-organized spindle with two poles in which all chromosomes are accurately aligned for the subsequent chromosome elimination.

“Assembling a spindle from so many centres takes very long and involves a lot of coordination in space and time,” says Melina Schuh, who carried out the research in Ellenberg’s lab, “if the spindle fails to accurately segregate the chromosomes this results in diseases like Down syndrome and infertility. It is therefore very important that we now understand how this crucial division at the beginning of life is orchestrated.”

Lena Raditsch | alfa
Further information:
http://www.embl.org/downloads/

Further reports about: Division EGG MTOCs centrosomes microtubule oocyte spindle

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>