Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A unique arrangement for egg cell division

10.08.2007
Researchers uncover how the molecular machinery that mediates cell division in developing egg cells functions

Which genes are passed on from mother to child is decided very early on during the maturation of the egg cell in the ovary. In a cell division process that is unique to egg cells, half of the chromosomes are eliminated from the egg before it is fertilised. Using a powerful microscope, researchers from the European Molecular Biology Laboratory (EMBL) have now revealed how the molecular machinery functions that is responsible for chromosome reduction of egg cells in mice.

In the current issue of Cell they report the assembly of this machinery, which is very different from what happens in all other cells in the body. The process is likely conserved across species and the new insights might help shed light on defects occurring in human egg cell development.

The first step in the development of an egg cell is the division of its progenitor cell, the oocyte. Unlike other cells in the body, an oocyte does not divide equally to produce two identical daughter cells. Instead, it undergoes a reducing division, which halves its genetic material to generate a single egg cell with 23 instead of the normal 46 chromosomes in humans. It is crucial that the egg has half the normal set of chromosomes, because the second half is brought in by the sperm cell during fertilisation. The molecular apparatus that makes sure that the egg ends up with the correct number of chromosomes is a bipolar spindle consisting of protein filaments, called microtubules that are part of the cell’s skeleton. Spindle microtubules attach themselves to the chromosomes, separate them and pull one half out of the oocyte into a small polar body that is later discarded.

... more about:
»Division »EGG »MTOCs »centrosomes »microtubule »oocyte »spindle

“Microtubule spindles are found in all dividing cells. What is special about oocytes is that they lack specialised spindle-forming organelles, called centrosomes,” says Jan Ellenberg, Coordinator of the Gene Expression Unit at EMBL, “all other cells contain two centrosomes from where the microtubules originate. They predetermine the bipolar structure of the spindle that is essential to extrude exactly half of the chromosomes outside of the egg. For a long time we did not understand how mammalian oocytes could assemble a bipolar spindle without such centrosomes.”

Tracking spindle assembly over time with a high resolution microscope in live mouse oocytes, Ellenberg and his PhD student Melina Schuh found that the missing centrosomes are replaced by a flexible system of many small microtubule organising centres (MTOCs) in oocytes. Like centrosomes, these MTOCs serve as platforms from which microtubules grow, but they are not permanent structures. MTOCs only form when the division is about to start and accumulate in the cell’s centre. There, the around 80 individual MTOCs start interacting in a tug-of-war of pulling and pushing each other. This ultimately leads to a self-organized spindle with two poles in which all chromosomes are accurately aligned for the subsequent chromosome elimination.

“Assembling a spindle from so many centres takes very long and involves a lot of coordination in space and time,” says Melina Schuh, who carried out the research in Ellenberg’s lab, “if the spindle fails to accurately segregate the chromosomes this results in diseases like Down syndrome and infertility. It is therefore very important that we now understand how this crucial division at the beginning of life is orchestrated.”

Lena Raditsch | alfa
Further information:
http://www.embl.org/downloads/

Further reports about: Division EGG MTOCs centrosomes microtubule oocyte spindle

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>