Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A unique arrangement for egg cell division

10.08.2007
Researchers uncover how the molecular machinery that mediates cell division in developing egg cells functions

Which genes are passed on from mother to child is decided very early on during the maturation of the egg cell in the ovary. In a cell division process that is unique to egg cells, half of the chromosomes are eliminated from the egg before it is fertilised. Using a powerful microscope, researchers from the European Molecular Biology Laboratory (EMBL) have now revealed how the molecular machinery functions that is responsible for chromosome reduction of egg cells in mice.

In the current issue of Cell they report the assembly of this machinery, which is very different from what happens in all other cells in the body. The process is likely conserved across species and the new insights might help shed light on defects occurring in human egg cell development.

The first step in the development of an egg cell is the division of its progenitor cell, the oocyte. Unlike other cells in the body, an oocyte does not divide equally to produce two identical daughter cells. Instead, it undergoes a reducing division, which halves its genetic material to generate a single egg cell with 23 instead of the normal 46 chromosomes in humans. It is crucial that the egg has half the normal set of chromosomes, because the second half is brought in by the sperm cell during fertilisation. The molecular apparatus that makes sure that the egg ends up with the correct number of chromosomes is a bipolar spindle consisting of protein filaments, called microtubules that are part of the cell’s skeleton. Spindle microtubules attach themselves to the chromosomes, separate them and pull one half out of the oocyte into a small polar body that is later discarded.

... more about:
»Division »EGG »MTOCs »centrosomes »microtubule »oocyte »spindle

“Microtubule spindles are found in all dividing cells. What is special about oocytes is that they lack specialised spindle-forming organelles, called centrosomes,” says Jan Ellenberg, Coordinator of the Gene Expression Unit at EMBL, “all other cells contain two centrosomes from where the microtubules originate. They predetermine the bipolar structure of the spindle that is essential to extrude exactly half of the chromosomes outside of the egg. For a long time we did not understand how mammalian oocytes could assemble a bipolar spindle without such centrosomes.”

Tracking spindle assembly over time with a high resolution microscope in live mouse oocytes, Ellenberg and his PhD student Melina Schuh found that the missing centrosomes are replaced by a flexible system of many small microtubule organising centres (MTOCs) in oocytes. Like centrosomes, these MTOCs serve as platforms from which microtubules grow, but they are not permanent structures. MTOCs only form when the division is about to start and accumulate in the cell’s centre. There, the around 80 individual MTOCs start interacting in a tug-of-war of pulling and pushing each other. This ultimately leads to a self-organized spindle with two poles in which all chromosomes are accurately aligned for the subsequent chromosome elimination.

“Assembling a spindle from so many centres takes very long and involves a lot of coordination in space and time,” says Melina Schuh, who carried out the research in Ellenberg’s lab, “if the spindle fails to accurately segregate the chromosomes this results in diseases like Down syndrome and infertility. It is therefore very important that we now understand how this crucial division at the beginning of life is orchestrated.”

Lena Raditsch | alfa
Further information:
http://www.embl.org/downloads/

Further reports about: Division EGG MTOCs centrosomes microtubule oocyte spindle

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>