Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find vitamin B1 deficiency key to vascular problems for diabetic patients

07.08.2007
Researchers at Warwick Medical School, University of Warwick, have discovered that deficiency of thiamine – vitamin B1 - may be key to a range of vascular problems for people with diabetes. They have also solved the mystery as to why thiamine deficiency in diabetes had remained hidden until now.

Diabetes is increasing in incidence in the UK and elsewhere and one of the most significant health problems associated with the condition are vascular complications: microvascular complications, such as damage to the kidney, retina and nerves in arms and legs; and macrovascular complications, such as heart disease and stroke.

The University of Warwick researchers, led by Professor Paul Thornalley, have shown conclusively that diabetic patients are thiamine deficient in blood plasma. They were also able to solve the mystery of what was happening to thiamine in diabetic patients and connect it more closely to vascular complications in diabetic patients.

In a paper entitled “High prevalence of low plasma thiamine concentration in diabetes linked to a marker of vascular disease”, published in Diabetologia on 4th August, the team found that thiamine concentration in blood plasma was decreased 76% in type 1 diabetic patients and 75% in type 2 diabetic patients. This significant decrease had been previously masked as the conventional way of assessing levels of thiamine status was to measure the activity of an enzyme called transketolase in red blood cells. Past studies had seen normal activity of this enzyme and assumed normal levels of thiamine when in fact the normal enzyme activity was due to increased amounts of two proteins THTR-1 and RFC-1 that help transport thiamine into red blood cells. The increased levels of these proteins were a direct response to there being a deficiency of thiamine in the body.

... more about:
»Diabetes »Plasma »deficiency »diabetic »thiamine »vascular

The researchers found that the decreased availability of thiamine in vascular cells in diabetes was linked to a marker of microvascular and macrovascular complications. It likely reflects problems in endothelial cells (endothelial cells line the body’s entire circulatory system) and increased risk of atherosclerosis (chronic inflammatuion in the artery walls).

The researchers found that the decreased plasma thiamine concentration in clinical diabetes was not due to a deficiency of dietary input of thiamine. Rather it was due to a profound increased rate of removal of thiamine from the blood into the urine.

The researchers feel that important areas for future study are: confirmation of low plasma thiamine concentrations in diabetic populations of other countries independent of local diet; the evaluation of thiamine and thiamine derivatives to correct low plasma thiamine concentration in diabetes, reverse vascular dysfunction and prevent vascular complications; and investigation of the mechanism of increased removal of thiamine from the blood into the urine in diabetes.

Peter Dunn | alfa
Further information:
http://www2.warwick.ac.uk/newsandevents/pressreleases/researchers_find_vitamin/

Further reports about: Diabetes Plasma deficiency diabetic thiamine vascular

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>