Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify a new mechanism in the malaria parasite to help it adapt to infected individuals

03.08.2007
Research has been conducted on the genes of the parasite that play a role during the invasion of red blood cells, as these are very clear targets to develop vaccines against the disease.

Plasmodium falciparum is responsible for the most severe forms of human malaria. Invasion of host red blood cells is an essential step of the complex life cycle of this parasite. During the process of invasion, P. falciparum, which appears in the stage of a “merozoite”, is exposed to antibodies from the immune system. Consequently, the proteins of the merozoite that interact with red blood cells are a possible weak point, and thus a very clear target to develop vaccines.

Alfred Cortés, an ICREA researcher working at IRB Barcelona and an expert in molecular parasitology, together with researchers from the National Institute for Medical Research (NIMR) in London, have discovered that the parasite has the ability to switch on and off the expression of some of the proteins it uses to enter its victim’s red blood cells. The researchers believe that this ability makes the parasite more adaptable when attempting to invade the cells. The study is published in Friday’s issue of Plos Pathogens, the scientific journal with the greatest impact on the field of Parasitology.

30 genes are know to be involved in the process of invasion. Now, the scientists have found that P. falciparum can activate and deactivate the expression of 7 of these genes (and their corresponding proteins) without compromising the parasite’s ability to enter normal or modified red blood cells. According to Cortés, this suggests that the varied expression of these genes may help the parasite to escape the host organism’s immune responses, although the researcher points out that this is yet to be confirmed.

... more about:
»Cortés »Vaccine »blood cell »falciparum »parasite

The researchers discovered that the silencing mechanism happens at the epigenetic level, meaning that the parasite stops expressing a certain gene without changing the underlying genetic information, and that the mechanism is flexible, adaptable and easily reversible. This means that the parasite can re-express the proteins relatively easily when infecting another individual or silence them again in a different host, explains Cortés. “We are talking about a very sophisticated adaptation system to the host and our challenge is to find out how this mechanism works at molecular level; that is, we need to figure out which specific epigenetic modifications are associated to activity or to silencing”. Another immediate objective is to find out how many of the 30 genes involved in the invasion of red blood cells are active or inactive in parasites found in nature. “Thanks to this study we have been able to identify 7 genes in 4 different genetic families that may be silenced in a specific P. falciparum strain; we suspect, however, that other genes may also be silenced, and we’ll follow this up with studies on wild strains of the parasite”, concludes Cortés.

The scientist, who leads a research line in molecular parasitology in the Genetic Translation Laboratory at IRB Barcelona, emphasises that this study has also revealed that none of these proteins acting on its own would be a suitable candidate to develop a vaccine because the parasite will still succeed in invading the red blood cell to continue its life cycle”. Researchers like Alfred Cortés believe that more insight into the biology of this parasite will allow us to design vaccines with a high likelihood of success.

Sònia Armengou | alfa
Further information:
http://www.irbbarcelona.org

Further reports about: Cortés Vaccine blood cell falciparum parasite

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>