Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery of active genes reveals new clues on ALS

New England Journal of Medicine study supported by Augie's Quest offers increased opportunities for finding a cure

A University of California, Irvine neurologist is part of a national group of scientists who have identified the active genes in sporadic amyotrophic lateral sclerosis (ALS), a discovery that provides expanded opportunities for developing therapies to treat this chronic, incurable disease.

Led by researchers at the Translational Genomics Research Institute (TGen) in Phoenix, a comprehensive scan of the human genome has identified more than 50 genetic abnormalities in people with sporadic ALS, the most prevalent form of the disease. ALS also is known as Lou Gehrig’s disease.

Dr. Tahseen Mozaffar, a neurologist and director of the MDA ALS and Neuromuscular Diseases Center at the UC Irvine Medical Center, participated in the effort, which included a number of researchers from the Western ALS Group.

... more about:
»QUEST »genes »identified

Study results appear online in the New England Journal of Medicine. The study was supported by Augie’s Quest, a fast-track ALS research program, in conjunction with Muscular Dystrophy’s ALS Division.

Fitness pioneer Augie Nieto started Augie’s Quest after being diagnosed with ALS in March 2005. Nieto is co-founder and former president of Life Fitness, and chairman of Octane Fitness. He receives treatment at UC Irvine. Last year, Augie’s Quest donated $500,000 to UC Irvine’s MDA ALS and Neuromuscular Diseases Center. The grant is enhancing patient care services at the clinic and supports the activities of UC Irvine researchers who are seeking new therapies and a cure.

“This is a monumental step forward in the effort to find a cure for ALS,” Mozaffar said. “The genetics discovered in this study have uncovered a number of inviting targets for further study toward new drugs to treat this disease. And enthusiastic supporters like Augie Nieto and his wife Lynne are helping make this possible.”

The researchers also identified genes likely to play a role in cell function that controls nerve adhesion, offering a major new avenue for ALS research. The findings indicate these genes produce a sort of molecular glue that attaches motor neurons to muscle, according to Dietrich Stephan, TGen director of neurogenomics and the study’s principal investigator. It appears that in ALS the nerve is able to peel off the muscle and, when that happens repeatedly, the nerves die. TGen researchers identified the differences by screening DNA samples from more than 1,200 people with and 2,000 people without sporadic ALS.

ALS is a progressive neurological disorder that leads to paralysis and death, usually within three to five years. Sporadic ALS appears in 90 to 95 percent of all cases; the other 5 to 10 percent are the inherited form of ALS.

Mozaffar said that a mouse model of the inherited form of ALS is aiding research in that area. But no such model exists for sporadec ALS, making this finding critically important to advancing research in the most prevalent form of the disease.

Tom Vasich | EurekAlert!
Further information:

Further reports about: QUEST genes identified

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>