Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Orangutans' communication resembles a game of 'charades'

02.08.2007
When orangutans use gestures to get their point across, they rely on the same basic strategy that people follow in playing the game of charades.

Captive orangutans intentionally modify or repeat hand or other signals selectively based on the success or failure of their first attempt, according to a August 2nd study in Current Biology, a publication of Cell Press.

“We were surprised that the orangutans' responses so clearly signaled their assessment of the audience's comprehension,” commented Richard Byrne of The University of St. Andrews. “Looking at the tapes of the animal’s responses, you can easily work out whether the orangutan thinks it has been fully, partially, or not understood--without seeing what went before.”

“This means that, in effect, they are passing information back to the audience about how well they are doing in understanding them--hence our 'charades' analogy,” he continued. “In playing the game, you want primarily to convey your meaning non-verbally--as does the orangutan--but secondarily to help the team get your meaning by giving them hints as to how well they are doing.”

... more about:
»Communication »charades' »gestures »signals

To find out whether orangutans intentionally communicate with people through gestures—a skill earlier attributed to chimpanzees—Erica Cartmill and Richard Byrne presented six captive orangutans with situations in which one tempting and one not-so-tempting food item had to be reached with human help.

But to test the orangutans’ strategy, the researchers provided a catch. Rather than play along all the time, the experimenter sometimes purposefully misunderstood the orangutan’s requests. In some cases, they provided only half of the delicious treat; in others, they handed over the yuckier alternative instead.

When the person with whom they were trying to communicate did not meet the orangutans’ aims, the apes persisted in further tries, the researchers reported. When partially understood, the animals narrowed down their range of signals by focusing on gestures already used and repeating them frequently. In contrast, when completely misunderstood, orangutans elaborated their range of gestures and avoided repetition of "failed" signals.

“The response showed that the orangutan had intended a particular result, anticipated getting it, and kept trying until it got the result,” Cartmill said. “The orangutans made a clear distinction between total misunderstanding, when they tended to give up on the signals they'd used already and use new, but equivalent, ones to get the idea across, and partial misunderstanding, when they tended to repeat the signals that had already partially worked, keeping at it with vigor. The result is that understanding can be achieved more quickly.”

The orangutans’ charades-like strategy is one way to construct a shared lexicon from learned or ritualized signals, the researchers concluded. Further investigation of communication among apes may therefore provide insight into the pre-linguistic devices that helped construct the very earliest forms of language.

Erin Doonan | EurekAlert!
Further information:
http://www.current-biology.com

Further reports about: Communication charades' gestures signals

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>