Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Orangutans' communication resembles a game of 'charades'

02.08.2007
When orangutans use gestures to get their point across, they rely on the same basic strategy that people follow in playing the game of charades.

Captive orangutans intentionally modify or repeat hand or other signals selectively based on the success or failure of their first attempt, according to a August 2nd study in Current Biology, a publication of Cell Press.

“We were surprised that the orangutans' responses so clearly signaled their assessment of the audience's comprehension,” commented Richard Byrne of The University of St. Andrews. “Looking at the tapes of the animal’s responses, you can easily work out whether the orangutan thinks it has been fully, partially, or not understood--without seeing what went before.”

“This means that, in effect, they are passing information back to the audience about how well they are doing in understanding them--hence our 'charades' analogy,” he continued. “In playing the game, you want primarily to convey your meaning non-verbally--as does the orangutan--but secondarily to help the team get your meaning by giving them hints as to how well they are doing.”

... more about:
»Communication »charades' »gestures »signals

To find out whether orangutans intentionally communicate with people through gestures—a skill earlier attributed to chimpanzees—Erica Cartmill and Richard Byrne presented six captive orangutans with situations in which one tempting and one not-so-tempting food item had to be reached with human help.

But to test the orangutans’ strategy, the researchers provided a catch. Rather than play along all the time, the experimenter sometimes purposefully misunderstood the orangutan’s requests. In some cases, they provided only half of the delicious treat; in others, they handed over the yuckier alternative instead.

When the person with whom they were trying to communicate did not meet the orangutans’ aims, the apes persisted in further tries, the researchers reported. When partially understood, the animals narrowed down their range of signals by focusing on gestures already used and repeating them frequently. In contrast, when completely misunderstood, orangutans elaborated their range of gestures and avoided repetition of "failed" signals.

“The response showed that the orangutan had intended a particular result, anticipated getting it, and kept trying until it got the result,” Cartmill said. “The orangutans made a clear distinction between total misunderstanding, when they tended to give up on the signals they'd used already and use new, but equivalent, ones to get the idea across, and partial misunderstanding, when they tended to repeat the signals that had already partially worked, keeping at it with vigor. The result is that understanding can be achieved more quickly.”

The orangutans’ charades-like strategy is one way to construct a shared lexicon from learned or ritualized signals, the researchers concluded. Further investigation of communication among apes may therefore provide insight into the pre-linguistic devices that helped construct the very earliest forms of language.

Erin Doonan | EurekAlert!
Further information:
http://www.current-biology.com

Further reports about: Communication charades' gestures signals

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>