Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Orangutans' communication resembles a game of 'charades'

02.08.2007
When orangutans use gestures to get their point across, they rely on the same basic strategy that people follow in playing the game of charades.

Captive orangutans intentionally modify or repeat hand or other signals selectively based on the success or failure of their first attempt, according to a August 2nd study in Current Biology, a publication of Cell Press.

“We were surprised that the orangutans' responses so clearly signaled their assessment of the audience's comprehension,” commented Richard Byrne of The University of St. Andrews. “Looking at the tapes of the animal’s responses, you can easily work out whether the orangutan thinks it has been fully, partially, or not understood--without seeing what went before.”

“This means that, in effect, they are passing information back to the audience about how well they are doing in understanding them--hence our 'charades' analogy,” he continued. “In playing the game, you want primarily to convey your meaning non-verbally--as does the orangutan--but secondarily to help the team get your meaning by giving them hints as to how well they are doing.”

... more about:
»Communication »charades' »gestures »signals

To find out whether orangutans intentionally communicate with people through gestures—a skill earlier attributed to chimpanzees—Erica Cartmill and Richard Byrne presented six captive orangutans with situations in which one tempting and one not-so-tempting food item had to be reached with human help.

But to test the orangutans’ strategy, the researchers provided a catch. Rather than play along all the time, the experimenter sometimes purposefully misunderstood the orangutan’s requests. In some cases, they provided only half of the delicious treat; in others, they handed over the yuckier alternative instead.

When the person with whom they were trying to communicate did not meet the orangutans’ aims, the apes persisted in further tries, the researchers reported. When partially understood, the animals narrowed down their range of signals by focusing on gestures already used and repeating them frequently. In contrast, when completely misunderstood, orangutans elaborated their range of gestures and avoided repetition of "failed" signals.

“The response showed that the orangutan had intended a particular result, anticipated getting it, and kept trying until it got the result,” Cartmill said. “The orangutans made a clear distinction between total misunderstanding, when they tended to give up on the signals they'd used already and use new, but equivalent, ones to get the idea across, and partial misunderstanding, when they tended to repeat the signals that had already partially worked, keeping at it with vigor. The result is that understanding can be achieved more quickly.”

The orangutans’ charades-like strategy is one way to construct a shared lexicon from learned or ritualized signals, the researchers concluded. Further investigation of communication among apes may therefore provide insight into the pre-linguistic devices that helped construct the very earliest forms of language.

Erin Doonan | EurekAlert!
Further information:
http://www.current-biology.com

Further reports about: Communication charades' gestures signals

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>