Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study provides new data about the laws governing embryo development in organisms

11.07.2007
Research aimed at understanding the mechanisms underlying embryo development has taken a step forward thanks to collaborative work between biologists specialized in the study of the fruit fly (Drosophila melanogaster) and scientists specialized in the design of mathematical models that simulate the functioning of biological systems.

Specifically, a study of wing formation in Drosophila, led by the researchers Marco Milán, from the Institute for Research in Biomedicine (IRB Barcelona), and Javier Buceta, from the Centre for Research in Theoretical Chemistry (CeRQT), both located within the Barcelona Science Park (PCB), has led to the discovery of a new genetic function involved in this process, and furthers our understanding of the internal laws which regulate it. The article will be published on 11 July in the journal PLoS One.

The development of a living being is based on general laws written into the genetic code of each cell and which enable them to develop a specialist function, modifying the way they divide, their form and their behaviour. These changes are coordinated through a series of instructions that must be correctly interpreted within the cell, and this means that the information must pass along a pathway of signalling molecules. These pathways have been conserved across evolution, and therefore studies using models such as the fruit fly provide information about these same processes in humans and other animals.

The Developmental Biology of Drosophila Group from the IRB Barcelona, led by Marco Milán, studies the signals that guide wing development in Drosophila. The wings are generated from a set of cells grouped into different segments or compartments that never mix with one another, and which enable the symmetrical construction of the dorsal and ventral parts starting from a given limit or border. This process of subdivision into compartments also takes place during the formation of the vertebrate central nervous system, and the genes and signalling pathways involved are conserved in both Drosophila and vertebrate species.

... more about:
»Buceta »Development »Drosophila »LED »Milán

Although biologists already had an intuitive idea of how the limit or border between these compartments was generated, there had been no systematic study taking into account all the relevant elements. Therefore, and with the backing of a group from the CeQRT of the PCB, led by Javier Buceta, they decided to turn to mathematical modelling as a way of understanding better the internal mechanisms which regulated this process. In this way they identified certain interactions in the signalling pathways that brought to light a number of contradictions and showed that a key step was missing in their model. As Milán explains: “Thanks to this computer simulation we have found a new genetic function that ensures the stability of the system and has enabled us to test its robustness. This study shows that modelling is a highly useful tool for describing in silico new properties of a biological system and being able to corroborate them subsequently in vivo”.

In this regard, Buceta, who leads a group dedicated to modelling biological processes (the SiMBioSys) in the CeRQT, explains that “the advantage of these modelling techniques is that they can simulate genetic and cell interactions as a set of mathematical equations and, therefore, to determine the feasibility of a biological mechanism”. In order to study the stability of the system they conducted around 45,000 different in silico experiments, introducing variations in twenty parameters. The results have enabled them to identify the most important system parameters and showed that the biological mechanism maintained its functionality in 91% of the cases analyzed. According to Milán and Buceta “this study confirms the hypothesis that if this gene network has been maintained across evolution in both vertebrates and insects, it is precisely because it is highly stable and robust”.

Sonia Armengou | alfa
Further information:
http://www.irbbarcelona.org

Further reports about: Buceta Development Drosophila LED Milán

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>