Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To Benefit From Mushrooms

22.03.2002


Mushrooms (of course, those grown in an ecologically safe area) accumulate many microelements good for human and animal health, in particular, selenium. The natural cycle of selenium was studied by a team from the Vernadsky Institute of Geochemistry and Analytical Chemistry in Moscow.



The scientific expedition worked in the eastern part of the Meshchera (at the meeting point of the Moscow, Ryazan, and Vladimir areas). Scientists found selenium in many natural objects (soil, grass, leafs, elk`s excrements, mosquito larvae, and tissues of brown frog), however, its highest levels were observed in mushrooms. A concentration reached milligrams per kilogram of the mushroom weight, i.e., exceeded the selenium contents in other objects by three orders of magnitude.

Selenium is concentrated most significantly by "tubular" mushrooms (having an umbrella-shaped cap with spore-bearing tubules on the underside), and the record-holder is edible boletus - Boletus edilus. "Platy" mushrooms (with spore-bearing thin plates on the underside) of the genus Lycoperdon, Cantharellus, Agaricus, Lactarius, and Amanita are also enriched in selenium. A certain amount of selenium volatilizes upon mushroom drying, as was indicated by a considerable decrease in its content. This may be explained by the predominance of labile forms of selenium in the fungal tissues. This assumption is confirmed by the fact that selenium is easily extracted from fungi by acid and alkali solutions and also by water. Therefore, as one cooks some mushroom soup, most part of selenium goes into broth.


To investigate how the human organism assimilates fungal selenium and benefits from it, the scientists performed an experiment. Volunteers drank half a liter of the boletus broth. For the following week, their blood and urine were analyzed daily. The selenium concentration in blood increased in several hours, but remained unchanged in urine for several days. This points to the fact that selenium coming from fungi is accumulated by the human organism. Moreover, the hemoglobin concentration and the activity of glutathione peroxidase in the blood of those volunteers increased, which is indicative of the metabolism intensification.

However, why this element having a lunar name (Greek selene, moon) is needed for the organism? It is the component of many enzymes, most of which act as antioxidants. For instance, aforementioned glutathione peroxidase is contained in erythrocytes and induces the hydrogen peroxide reduction to water. Selenium-containing enzymes are necessary for various tissues and also control the thyroid function. Selenium is the obligatory element of vital proteins, e.g., selenoflagellin forming a spermatozoid tail. Selenium is incorporated into the protein molecule as selenocysteine, an amino acid. Selenium deficiency is the forerunner of serious diseases: the degeneration of the muscular tissues of men and cattle, heart disorders, kidney sickness, and even cancer, because a lack of selenium causes an increase in the mutation frequency. The risk of these diseases grows within regions, in which the natural environment and food are impoverished in selenium. In this case, it is advisable to take selenium-containing food supplements offered by the modern pharmacology. Yet the Russian scientists believe that delicious mushrooms boletuses are a perfect natural source of this element.

Nadia Markina | alphagalileo

More articles from Life Sciences:

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>