Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Variant Creutzfeldt-Jakob Disease – prion amplification breakthrough brings new insights and hopes for a blood test

05.07.2007
Researchers have shown that a recently developed laboratory method to amplify prions (Protein Misfolding Cyclic Amplification) can be applied to variant CJD.

The work was carried out by scientists at the National CJD Surveillance Unit at the University of Edinburgh, the Scottish National Blood Transfusion Service, Neuropathogenesis Unit and CSL Behring. It is published this month in the Journal of Pathology.

The team, led by Dr. Mark Head, also shows for the first time that variant CJD prions can be amplified from brain tissue samples using normal blood cells to improve the sensitivity of current detection tests. This method has the potential to be applied on other tissues and fluids, including blood. The prion amplification is dependent on genetic factors, similar to those influencing susceptibility to variant CJD.

Background

... more about:
»Brain »CJD »Prion »amplification

Creutzfeldt-Jakob disease (CJD) seems to result from conversion of a normal protein in the body to an abnormal form that is self-replicating as a prion and toxic to the brain. In variant CJD, this occurs after infection by the bovine spongiform encephalopathy (BSE) prion. Following exposure to BSE, there is a long silent period before the prion spreads to the brain and causes neurological symptoms. It is now clear that during this silent period individuals can pass variant CJD prions on to others by blood transfusion and there are also fears that the disease might also be spread by certain kinds of surgery.

One way to protect blood recipients from this threat is to screen blood donations for prions, but efforts to develop such a test have proven difficult, partly because of the very low level of prions that are likely to be present in blood.

The team stress that the work is at an early stage, but co-researcher Professor James Ironside, of the National CJD Surveillance Unit at the University of Edinburgh, said “These new findings provide us with an invaluable tool to study one of the fundamental aspects of variant CJD and take us one step closer towards supporting a test to screen for individuals who might inadvertently pass this disease on to others through blood transfusion, organ donation or surgery.”

Jennifer Beal | alfa
Further information:
http://www.wiley.co.uk
http://www.interscience.wiley.com/thejournalofpathology

Further reports about: Brain CJD Prion amplification

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>