Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann scientists discover a new line of communication between nervous system cells

28.06.2007
Weizmann Institute research reveals a mechanism for healthy nerve development, which may lead to new treatments for neurodegenerative diseases

In a host of neurological diseases, including multiple sclerosis (MS) and several neuropathies, the protective covering surrounding the nerves – an insulating material called myelin – is damaged. Scientists at the Weizmann Institute of Science have now discovered an important new line of communication between nervous system cells that is crucial to the development of myelinated nerves – a discovery that may aid in restoring the normal function of the affected nerve fibers.

Nerve cells (neurons) have long, thin extensions called axons that can reach up to a meter and or more in length. Often, these extensions are covered by myelin, which is formed by a group of specialized cells called glia. Glial cells revolve around the axon, laying down the myelin sheath in segments, leaving small nodes of exposed nerve in between. More than just protection for the delicate axons, the myelin covering allows nerve signals to jump instantaneously between nodes, making the transfer of these signals quick and efficient. When myelin is missing or damaged, the nerve signals can’t skip properly down the axons, leading to abnormal function of the affected nerve and often to its degeneration.

In research published recently in Nature Neuroscience, Weizmann Institute scientists Prof. Elior Peles, graduate student Ivo Spiegel, and their colleagues in the Molecular Cell Biology Department and in the United States, have now provided a vital insight into the mechanism by which glial cells recognize and myelinate axons.

... more about:
»Axon »Myelin »Necl4 »glial cells »signals

How do the glial cells and the axon coordinate this process" The Weizmann Institute team found a pair of proteins that pass messages from axons to glial cells. These proteins, called Necl1 and Necl4, belong to a larger family of cell adhesion molecules, so called because they sit on the outer membranes of cells and help them to stick together. Peles and his team discovered that even when removed from their cells, Necl1, normally found on the axon surface, and Necl4, which is found on the glial cell membrane, adhere tightly together. When these molecules are in their natural places, they not only create physical contact between axon and glial cell, but also serve to transfer signals to the cell interior, initiating changes needed to undertake myelination.

The scientists found that production of Necl4 in the glial cells rises when they come into close contact with an unmyelinated axon, and as the process of myelination begins. They observed that if Necl4 is absent in the glial cells, or if they blocked the attachment of Necl4 to Necl1, the axons that were contacted by glial cells did not myelinate. In the same time period, myelin wrapping was already well underway around most of the axons in the control group.

“What we’ve discovered is a completely new means of communication between these nervous system cells,” says Peles. “The drugs now used to treat MS and other degenerative diseases in which myelin is affected can only slow the disease, but not stop or cure it. Today, we can’t reverse the nerve damage caused by these disorders. But if we can understand the mechanisms that control the process of wrapping the axons by their protective sheath, we might be able to recreate that process in patients.”

Jennifer Manning | EurekAlert!
Further information:
http://www.acwis.org

Further reports about: Axon Myelin Necl4 glial cells signals

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>