Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann scientists discover a new line of communication between nervous system cells

28.06.2007
Weizmann Institute research reveals a mechanism for healthy nerve development, which may lead to new treatments for neurodegenerative diseases

In a host of neurological diseases, including multiple sclerosis (MS) and several neuropathies, the protective covering surrounding the nerves – an insulating material called myelin – is damaged. Scientists at the Weizmann Institute of Science have now discovered an important new line of communication between nervous system cells that is crucial to the development of myelinated nerves – a discovery that may aid in restoring the normal function of the affected nerve fibers.

Nerve cells (neurons) have long, thin extensions called axons that can reach up to a meter and or more in length. Often, these extensions are covered by myelin, which is formed by a group of specialized cells called glia. Glial cells revolve around the axon, laying down the myelin sheath in segments, leaving small nodes of exposed nerve in between. More than just protection for the delicate axons, the myelin covering allows nerve signals to jump instantaneously between nodes, making the transfer of these signals quick and efficient. When myelin is missing or damaged, the nerve signals can’t skip properly down the axons, leading to abnormal function of the affected nerve and often to its degeneration.

In research published recently in Nature Neuroscience, Weizmann Institute scientists Prof. Elior Peles, graduate student Ivo Spiegel, and their colleagues in the Molecular Cell Biology Department and in the United States, have now provided a vital insight into the mechanism by which glial cells recognize and myelinate axons.

... more about:
»Axon »Myelin »Necl4 »glial cells »signals

How do the glial cells and the axon coordinate this process" The Weizmann Institute team found a pair of proteins that pass messages from axons to glial cells. These proteins, called Necl1 and Necl4, belong to a larger family of cell adhesion molecules, so called because they sit on the outer membranes of cells and help them to stick together. Peles and his team discovered that even when removed from their cells, Necl1, normally found on the axon surface, and Necl4, which is found on the glial cell membrane, adhere tightly together. When these molecules are in their natural places, they not only create physical contact between axon and glial cell, but also serve to transfer signals to the cell interior, initiating changes needed to undertake myelination.

The scientists found that production of Necl4 in the glial cells rises when they come into close contact with an unmyelinated axon, and as the process of myelination begins. They observed that if Necl4 is absent in the glial cells, or if they blocked the attachment of Necl4 to Necl1, the axons that were contacted by glial cells did not myelinate. In the same time period, myelin wrapping was already well underway around most of the axons in the control group.

“What we’ve discovered is a completely new means of communication between these nervous system cells,” says Peles. “The drugs now used to treat MS and other degenerative diseases in which myelin is affected can only slow the disease, but not stop or cure it. Today, we can’t reverse the nerve damage caused by these disorders. But if we can understand the mechanisms that control the process of wrapping the axons by their protective sheath, we might be able to recreate that process in patients.”

Jennifer Manning | EurekAlert!
Further information:
http://www.acwis.org

Further reports about: Axon Myelin Necl4 glial cells signals

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>