Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team's model aids understanding of protein networks --Work could impact cancer research

27.06.2007
An international team of researchers, including several from MIT, has developed a computational model that helps identify relationships between proteins and the enzymes that regulate them.

The work could help researchers understand the complex protein networks that influence human disease, including cancer. The researchers report their findings in the cover story of the June 29 issue of Cell.

The new method, known as NetworKIN, can trawl through existing research data and use it to illuminate protein networks that control cellular processes. It focuses on enzymes called kinases, which are involved in many cell signaling pathways, including repair of DNA damage that can lead to cancer.

The model was developed by researchers from MIT, the Samuel Lunenfeld Research Institute of Mount Sinai Hospital in Canada and the European Molecular Biology Laboratory in Germany.

... more about:
»Kinase »Yaffe »cellular process »developed »pathway

NetworKIN “gives us the tools to take the information we already have and begin to build a map of the kinase signaling pathways within the cells,” said Michael Yaffe, MIT associate professor of biology and biological engineering, a member of MIT's Center for Cancer Research (CCR) and one of the authors of the paper.

“By getting a network-wide view, multiple aberrant genes of kinase- controlled processes are more easily targeted,” said Rune Linding, a postdoctoral fellow with joint appointments through the CCR and Mount Sinai. “In the future, complex human diseases will be treated by targeting multiple genes.”

Kinases act by phosphorylating, or adding a phosphate group, to a protein. That signal tells a protein what it should be doing. Yaffe estimated that at any one time, 30 to 50 percent of the proteins in a cell are phosphorylated.

Because kinases play such a critical role in cellular processes, including DNA repair and cell division, scientists have been working to identify where phosphorylation takes place in a target protein.

Mass spectrometry makes it easy to identify those sites, but until now there has been no good way to figure out which kinases are acting on each site, Yaffe said.

“It's a huge bottleneck,” he said. “We're getting thousands of phosphorylation sites, but we don't know which kinase phosphorylated them, so we don't know what pathway to put them in.”

To solve that problem, the researchers developed a two-step approach.

In the first step, they used a pair of previously developed computer programs that can analyze the amino acid sequence of the phosphorylation site and predict which family of kinases is most likely to bind to and phosphorylate it.

However, each family includes several kinases, and the sequence alone cannot tell you which one acts on the site.

To pinpoint the kinases more accurately, the researchers developed a computational model that analyzes databases that contain information about signaling pathways and protein interactions. The program also performs “text mining” of published articles and abstracts to search for reported protein-kinase interactions.

By combining these two sources of information-sequences of the target proteins and contextual information about the interaction between proteins and kinases-the computational model can develop a detailed network that would be very difficult to create by manually examining the available data.

“The sequence gets us into the ballpark, but it's all of this contextual information that helps us figure out specifically which kinases are acting on which sites,” said Yaffe, who is also affiliated with the Broad Institute of MIT and Harvard, and Beth Israel Deaconess Medical Center.

Other MIT authors on the paper are Gerald Ostheimer, a postdoctoral fellow in biological engineering, Marcel van Vugt, a postdoctoral fellow at the Center for Cancer Research, and Leona Samson, director of the Center for Environmental Health Sciences and professor of biology and biological engineering.

The research was funded by the European Commission FP6 Programme, the Danish Research Council for the Natural Sciences, the Lundbeck Foundation, Genome Canada and the National Institutes of Health Integrative Cancer Biology Program.

Written by Anne Trafton, MIT News Office

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

Further reports about: Kinase Yaffe cellular process developed pathway

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>