Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify first gene linked to scoliosis

26.06.2007
Physicians have recognized scoliosis, the abnormal curvature of the spine, since the time of Hippocrates, but its causes have remained a mystery -- until now. For the first time, researchers have discovered a gene that underlies the condition, which affects about 3 percent of all children.

The new finding lays the groundwork for determining how a defect in the gene -- known as CHD7 -- leads to the C- and S-shaped curves that characterize scoliosis. The gene's link to scoliosis was identified by scientists at Washington University School of Medicine in St. Louis, working in collaboration with investigators at the University of Texas Southwestern Medical Center and Texas Scottish Rite Hospital for Children, both in Dallas, Rutgers State University of New Jersey and the University of Iowa. The group published its results in May in the American Journal of Human Genetics.

"Hopefully, we can now begin to understand the steps by which the gene affects spinal development," says Anne Bowcock, Ph.D., professor of genetics, of medicine and of pediatrics. "If we understand the genetic basis of the condition, we can theoretically predict who is going to develop scoliosis and develop treatments to intervene before the deformity sets in. It may take many years to accomplish these goals, but I think it will eventually happen."

The researchers have traced a defect in CHD7 to idiopathic scoliosis, the form of the condition for which there is no apparent cause. It is the most common type of scoliosis, occurs in otherwise healthy children and is typically detected during the growth spurt that accompanies adolescence.

... more about:
»CHD7 »Condition »scoliosis

Although scientists have known for years that scoliosis runs in families, its pattern of inheritance has remained unclear. That's because the condition is likely caused by several different genes that work in concert with one another -- and the environment -- to cause scoliosis. Bowcock predicts that scientists will soon find other genes involved in the disease.

The CHD7 gene is thought to play a critical role in many basic functions in the cell. The researchers zeroed in on the gene after finding that it is missing or profoundly disrupted in a rare syndrome called CHARGE. Babies born with the syndrome often die in infancy. Those that survive have heart defects, mental retardation, genital and urinary problems, ear abnormalities and deafness, among other problems. They also develop late-onset scoliosis.

"This led us to consider that milder variations of CHD7 may be involved in other types of scoliosis," Bowcock said.

The researchers, led by Carol Wise, Ph.D., at Scottish Rite Hospital, collected data on 52 families with a history of scoliosis in at least two members -- the one who sought treatment and another from earlier generation. The patients had an average spinal curvature of 40 degrees and did not have any illnesses, such as Marfan syndrome or cerebral palsy, which can also involve scoliosis. The researchers performed genome-wide scans that spelled out the 6 billion letters of genetic code in the affected family members and analyzed the data.

They found that patients with scoliosis very often had a defect in the gene's non-coding region, meaning that the error did not disrupt production of the CHD7 protein. The researchers speculate that this particular mutation alters the binding of a molecule that controls whether the gene is turned on. In this case, they think the gene is turned off more often than it should be, which reduces the amount of CHD7 protein produced.

"The change in the amount of the protein produced is subtle, which correlates with the onset of scoliosis, which typically happens very gradually," explains Michael Lovett, Ph.D., professor of genetics and pediatrics. "This particular defect was so highly associated with scoliosis that it is either the real McCoy or is very closely linked to the defect that causes the condition."

The researchers will continue to look for genetic variations involved in scoliosis by studying additional families with the condition.

Severe scoliosis is typically treated by surgery or by wearing an orthopedic brace, which straightens the curvature over time. Most minor spinal curves can be monitored by a doctor and do not progress to the point where treatment is necessary.

Caroline Arbanas | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: CHD7 Condition scoliosis

More articles from Life Sciences:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>