Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key finding by UC-San Diego scientist may improve treatment of anemia

21.06.2007
Scientists at the University of California, San Diego (UCSD) have determined a key mechanism by which the body regulates iron metabolism, a discovery that may provide new approaches for the treatment of anemia.

The findings, which are reported this week in the online publication of The Journal of Clinical Investigation, represent a collaborative effort between the laboratories of Randall Johnson, Ph.D., UCSD professor of biology and Victor Nizet, M.D., professor of pediatrics and pharmacy at the UCSD School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences.

Iron is essential for many normal biological processes including the production red blood cells that deliver oxygen to the body's tissues. By studying the regulation of iron and production of red blood cells in mice, the researchers established the relationship between a pair of proteins that play a central role in monitoring a hormone called hepcidin.

The hepcidin hormone is a peptide, or small protein, that is synthesized in the liver and regulates the levels of iron in the body. It prevents the body from absorbing more iron than is needed from food or supplements, and blocks the export of iron from cells.

... more about:
»HIF »Hepcidin »Iron »Oxygen »Treatment »UCSD »VHL »anemia

Patients with cancer, chronic inflammatory diseases or infections often develop high levels of hepcidin, which reduces the amount of iron available to support the production of new red blood cells. Consequently, such patients suffer from low red blood cell production, or anemia.

To properly respond to anemia, the body must somehow reduce hepcidin in order to increase the iron that is needed for red blood cell production. Until now, scientists didn't clearly understand the mechanisms by which hepcidin itself is regulated.

The UCSD research team discovered that a protein known as hypoxia-inducible transcription factor (HIF) is critical in orchestrating the proper hepcidin response in the liver. In turn, HIF levels are controlled on a minute-by-minute basis by the action of another protein known as von-Hippel Lindau factor (vHL.)

“The vHL factor works to lower HIF levels whenever oxygen is high or iron is abundant,” said Johnson. “When iron levels and oxygen delivery to the tissues drop, as is the case in anemia, vHL ceases its action and HIF is preserved.”

Previous research had shown that HIF is responsible for stimulating erythropoietin (EPO), a hormone that instructs the bone marrow to produce new red blood cells. The UCSD team made the critical and novel observation that HIF also strongly inhibits the production of hepcidin in the liver.

“Our findings show that the vHL and HIF proteins play a central role in sensing and regulating iron levels,” said lead author Carole Peyssonnaux, Ph.D., a former researcher with Nizet and Johnson who has now joined the faculty of the Institut Cochin in Paris, France. “In anemia, the body responds to low iron and oxygen levels by increasing HIF, which in turn suppresses hepcidin and boosts EPO to provide the iron and new red blood cells required to correct the problem.”

Importantly, the researchers found that HIF was capable of suppressing hepcidin even in mice suffering inflammatory changes in their bodies.

“This key finding suggests that new drug treatment strategies to boost HIF or inhibit vHL could reverse the abnormally high hepcidin levels seen in the anemia that affects the majority of patients suffering from chronic infections or inflammatory disease,” said Nizet.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: HIF Hepcidin Iron Oxygen Treatment UCSD VHL anemia

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>