Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key finding by UC-San Diego scientist may improve treatment of anemia

21.06.2007
Scientists at the University of California, San Diego (UCSD) have determined a key mechanism by which the body regulates iron metabolism, a discovery that may provide new approaches for the treatment of anemia.

The findings, which are reported this week in the online publication of The Journal of Clinical Investigation, represent a collaborative effort between the laboratories of Randall Johnson, Ph.D., UCSD professor of biology and Victor Nizet, M.D., professor of pediatrics and pharmacy at the UCSD School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences.

Iron is essential for many normal biological processes including the production red blood cells that deliver oxygen to the body's tissues. By studying the regulation of iron and production of red blood cells in mice, the researchers established the relationship between a pair of proteins that play a central role in monitoring a hormone called hepcidin.

The hepcidin hormone is a peptide, or small protein, that is synthesized in the liver and regulates the levels of iron in the body. It prevents the body from absorbing more iron than is needed from food or supplements, and blocks the export of iron from cells.

... more about:
»HIF »Hepcidin »Iron »Oxygen »Treatment »UCSD »VHL »anemia

Patients with cancer, chronic inflammatory diseases or infections often develop high levels of hepcidin, which reduces the amount of iron available to support the production of new red blood cells. Consequently, such patients suffer from low red blood cell production, or anemia.

To properly respond to anemia, the body must somehow reduce hepcidin in order to increase the iron that is needed for red blood cell production. Until now, scientists didn't clearly understand the mechanisms by which hepcidin itself is regulated.

The UCSD research team discovered that a protein known as hypoxia-inducible transcription factor (HIF) is critical in orchestrating the proper hepcidin response in the liver. In turn, HIF levels are controlled on a minute-by-minute basis by the action of another protein known as von-Hippel Lindau factor (vHL.)

“The vHL factor works to lower HIF levels whenever oxygen is high or iron is abundant,” said Johnson. “When iron levels and oxygen delivery to the tissues drop, as is the case in anemia, vHL ceases its action and HIF is preserved.”

Previous research had shown that HIF is responsible for stimulating erythropoietin (EPO), a hormone that instructs the bone marrow to produce new red blood cells. The UCSD team made the critical and novel observation that HIF also strongly inhibits the production of hepcidin in the liver.

“Our findings show that the vHL and HIF proteins play a central role in sensing and regulating iron levels,” said lead author Carole Peyssonnaux, Ph.D., a former researcher with Nizet and Johnson who has now joined the faculty of the Institut Cochin in Paris, France. “In anemia, the body responds to low iron and oxygen levels by increasing HIF, which in turn suppresses hepcidin and boosts EPO to provide the iron and new red blood cells required to correct the problem.”

Importantly, the researchers found that HIF was capable of suppressing hepcidin even in mice suffering inflammatory changes in their bodies.

“This key finding suggests that new drug treatment strategies to boost HIF or inhibit vHL could reverse the abnormally high hepcidin levels seen in the anemia that affects the majority of patients suffering from chronic infections or inflammatory disease,” said Nizet.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: HIF Hepcidin Iron Oxygen Treatment UCSD VHL anemia

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>