Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify protein pathway involved in Parkinson disease development

20.06.2007
Scientists have found a novel signaling pathway in cells that is altered by genetic mutations recently identified in Parkinson disease development. These new findings show how the mutations affect cellular function and could provide a target for drug therapies to treat the disease. The research by a team of Emory University scientists will be published June 18 in the Public Library of Science Biology (PLoS Biology) journal.

Parkinson disease is a degenerative disorder of the central nervous system resulting from the loss of neurons in the brain that produce dopamine. This lowering of dopamine leads to decreased stimulation of the brain's motor cortex. Although scientists have not known the exact cause of the loss of these dopamine-producing neurons, they believe it is related to dysfunctional mitochondria and oxidative stress. Mitochondria are the cell's "power plants," which metabolize oxygen and generate energy. Oxidative stress is the damage caused to cells by reactive oxygen produced during oxygen metabolism.

Although cells have mechanisms in place to protect against oxidative damage, this system can break down in the face of environmental challenges or genetic mutations.

The Emory researchers found that the mitochondrial protein PINK1 normally protects cells from oxidative stress and promotes cell survival by regulating function of the protein TRAP1. When PINK1 is mutated, however, the protective TRAP1 pathway is disrupted, leading to mitochondrial damage.

... more about:
»Development »PINK1 »Parkinson »mutations

Other scientists recently have linked early onset Parkinson disease to mutations in both copies of the PINK1 gene (one from each parent). They also have evidence that single-copy mutations in PINK1 are a significant risk factor for the development of later-onset Parkinson disease.

"We now know much more about the effect of PINK1 mutations on the mitochondria and how this novel signaling pathway is disrupted in the development of Parkinson disease," says Lian Li, PhD, associate professor of pharmacology in Emory University School of Medicine and research team leader. "We believe the PINK1 and TRAP1 pathway may be a future target for therapeutic intervention."

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

Further reports about: Development PINK1 Parkinson mutations

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>