Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscle weakness: New mutation identified

18.06.2007
New research, published in The Journal of Physiology, has identified a novel mutation associated with muscle weakness and distal limb deformities.

The study demonstrates that muscle weakness experienced by persons with a regulatory protein tropomyosin mutation is directly related to a mechanism by which the mutant tropomyosin modulates contractile speed and force-generation capacity.

Dr. Julien Ochala and co-workers at the Department of Clinical Neurophysiology, University of Uppsala, in collaboration with scientists at the Department of Pathology, University of Göteborg, explored the mechanisms underlying the muscle weakness experienced by a woman and her daughter with a β-tropomyosin mutation, i.e., muscle weakness in the absence of macro or microscopic signs of muscle wasting. The results from single fibre contractile measurements and in vitro motility analyses demonstrated a mechanism where tropomyosin modulates myosin-actin kinetics. A slower motor protein myosin attachment rate to and a faster detachment rate from actin, caused by the mutation, results in a reduced number of myosin molecules in the strong actin binding state and muscle weakness. The results also implicate a potential role of the regulatory protein tropomyosin in modulating contractile speed and force-generation under physiological conditions.

It is suggested that the findings at the gene, protein and muscle cell levels in this specific neuromuscular disorder will have a significant impact on our understanding of the disease pathogenesis and provide important information for future therapeutic strategies. Walter R. Frontera, an independent expert, says: "Dr. Ochala and collaborators have published elegant proof of the clinical consequences of mutations in the regulatory proteins of skeletal muscles. Their data provide strong support for the dissociation between qualitative alterations in muscle contractility and quantitative evidence of muscle atrophy".

Melanie Thomson | EurekAlert!
Further information:
http://www.blackwellpublishing.com

Further reports about: Mutation muscle weakness tropomyosin weakness

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>