Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Finds That Circadian Rhythms Dominate All Life Functions, Play Significant Role In Metabolism

15.06.2007
New research from Colorado State University shows that the function of all genes in mammals is based on circadian – or daily – rhythms. The study, publishing in PLoS Computational Biology on June 15, refutes the current theory that only 10 percent to 15 percent of all genes were affected by nature’s clock. While scientists have long known that circadian rhythms regulate the behavior of the living, the study shows that daily rhythm dominates all life functions and particularly metabolism. The new study presents oscillation as a basic property of all genes in the organism as opposed to special function of some genes as previously believed.

Knowing about oscillation properties of genes involved in metabolism is essential for understanding how genes interact with and regulate health and disease. Colorado State University researcher Andrey Ptitsyn’s new analysis of data collected through several studies establishes a baseline oscillation in 98 to 99 percent of all genes through advanced computer algorithms. Most of these genes have never been previously reported as changing their expression level in a daily cycle. Some of these genes, considered “housekeeping,” have been used as a stable reference platform in gene expression studies.

“Anyone who diets, for example, knows you shouldn’t eat late, and now we are getting closer to understanding why exactly,” said Ptitsyn, a researcher in the Bioinformatics Center at the College of Veterinary Medicine and Biomedical Sciences. The center is located in the Department of Microbiology, Immunology and Pathology. “We discovered that all genes have a significant change in pattern of activity – or expression – throughout the day. Every pathway of gene expression is affected by circadian rhythms, and the timing of the rhythms from each group of genes that are synchronized is important.”

Ptitsyn also discovered alternative short and long copies of some genes oscillating in the opposite phase. These genes are essential components of leptin signaling system, responsible for the sensation of satiety after eating. The oscillating pattern varies in different organs and determines the effect of leptin on regulation of the energy balance. Better understanding gene oscillation may provide researchers with clues for developing ways to treat people who overeat because of impaired leptin signaling.

Circadian rhythms are biological rhythms that cycle over a period of about 24 hours and regulate timing for most physiological functions and behaviors such as sleeping, eating and activity.

As a checks-and-balances procedure, Ptitsyn analyzed the sets of data with several mathematical approaches to achieve the same results. The research also shows that gene oscillation is significantly more organized when mammals are exposed to regular periods of day and night. Oscillation can become chaotic in states of consistent lighting or lack of lighting, but it never stops.

Comparing the complex system in which the genes function to an AC power grid, Ptitsyn made the discovery by plotting the expression of 20,000 genes on a scale of frequency, or intensity, over a two day period and sorting them by phase or timing of oscillation. Where previous studies have failed, the Colorado State study uses advanced algorithms that have the capacity to identify patterns in such a large number of genes.

Ptitsyn discovered that gene activity oscillates in a “finely orchestrated” system and gene expression can be impacted by daylight and darkness – or a lack of both. For example, while gene expression oscillates in mice exposed to a constant state of dim light or darkness, the groups of genes that typically oscillate together – such as genes responsible for the function of an organ or a specific tissue – are chaotic under this state and don’t function as a group. Lack of orchestration can be easily confused with the lack of oscillation. This makes the rhythm much harder to detect.

“It’s like a conductor walking away from an orchestra during a performance; each musician continues to play, gradually going out of key with the others,” said Ptitsyn. That is one likely reason why researchers previously missed the impact of circadian rhythm on all genes.

Depending upon environmental factors, groups of genes can function in a synchronized manner, shifting in time against each other and working in what resembles a domino effect.

However, very few genes are found to be oscillating in the same phases in different tissues or organs. In fact, only about 5 percent of all genes fall into the same phase or timing of peaks and valleys. Synchronization with the activity of the other genes and genes in different organs is a very important and highly specific part of gene function.

In addition, genes can oscillate with different amplitude – the swing between the highest and the lowest point. Genes are expressed at very different levels, but most of them have the same relative change throughout the day. However, some genes show significant change in the amplitude in different organs or in response to a changing environment.

“When we standardize genes onto a common scale that measures levels of expression, we could not find a single gene that did not oscillate,” Ptitsyn said.

Andrew Hyde | alfa
Further information:
http://www.ploscompbiol.org

Further reports about: Expression Ptitsyn circadian oscillate oscillation

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>