Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Finds That Circadian Rhythms Dominate All Life Functions, Play Significant Role In Metabolism

15.06.2007
New research from Colorado State University shows that the function of all genes in mammals is based on circadian – or daily – rhythms. The study, publishing in PLoS Computational Biology on June 15, refutes the current theory that only 10 percent to 15 percent of all genes were affected by nature’s clock. While scientists have long known that circadian rhythms regulate the behavior of the living, the study shows that daily rhythm dominates all life functions and particularly metabolism. The new study presents oscillation as a basic property of all genes in the organism as opposed to special function of some genes as previously believed.

Knowing about oscillation properties of genes involved in metabolism is essential for understanding how genes interact with and regulate health and disease. Colorado State University researcher Andrey Ptitsyn’s new analysis of data collected through several studies establishes a baseline oscillation in 98 to 99 percent of all genes through advanced computer algorithms. Most of these genes have never been previously reported as changing their expression level in a daily cycle. Some of these genes, considered “housekeeping,” have been used as a stable reference platform in gene expression studies.

“Anyone who diets, for example, knows you shouldn’t eat late, and now we are getting closer to understanding why exactly,” said Ptitsyn, a researcher in the Bioinformatics Center at the College of Veterinary Medicine and Biomedical Sciences. The center is located in the Department of Microbiology, Immunology and Pathology. “We discovered that all genes have a significant change in pattern of activity – or expression – throughout the day. Every pathway of gene expression is affected by circadian rhythms, and the timing of the rhythms from each group of genes that are synchronized is important.”

Ptitsyn also discovered alternative short and long copies of some genes oscillating in the opposite phase. These genes are essential components of leptin signaling system, responsible for the sensation of satiety after eating. The oscillating pattern varies in different organs and determines the effect of leptin on regulation of the energy balance. Better understanding gene oscillation may provide researchers with clues for developing ways to treat people who overeat because of impaired leptin signaling.

Circadian rhythms are biological rhythms that cycle over a period of about 24 hours and regulate timing for most physiological functions and behaviors such as sleeping, eating and activity.

As a checks-and-balances procedure, Ptitsyn analyzed the sets of data with several mathematical approaches to achieve the same results. The research also shows that gene oscillation is significantly more organized when mammals are exposed to regular periods of day and night. Oscillation can become chaotic in states of consistent lighting or lack of lighting, but it never stops.

Comparing the complex system in which the genes function to an AC power grid, Ptitsyn made the discovery by plotting the expression of 20,000 genes on a scale of frequency, or intensity, over a two day period and sorting them by phase or timing of oscillation. Where previous studies have failed, the Colorado State study uses advanced algorithms that have the capacity to identify patterns in such a large number of genes.

Ptitsyn discovered that gene activity oscillates in a “finely orchestrated” system and gene expression can be impacted by daylight and darkness – or a lack of both. For example, while gene expression oscillates in mice exposed to a constant state of dim light or darkness, the groups of genes that typically oscillate together – such as genes responsible for the function of an organ or a specific tissue – are chaotic under this state and don’t function as a group. Lack of orchestration can be easily confused with the lack of oscillation. This makes the rhythm much harder to detect.

“It’s like a conductor walking away from an orchestra during a performance; each musician continues to play, gradually going out of key with the others,” said Ptitsyn. That is one likely reason why researchers previously missed the impact of circadian rhythm on all genes.

Depending upon environmental factors, groups of genes can function in a synchronized manner, shifting in time against each other and working in what resembles a domino effect.

However, very few genes are found to be oscillating in the same phases in different tissues or organs. In fact, only about 5 percent of all genes fall into the same phase or timing of peaks and valleys. Synchronization with the activity of the other genes and genes in different organs is a very important and highly specific part of gene function.

In addition, genes can oscillate with different amplitude – the swing between the highest and the lowest point. Genes are expressed at very different levels, but most of them have the same relative change throughout the day. However, some genes show significant change in the amplitude in different organs or in response to a changing environment.

“When we standardize genes onto a common scale that measures levels of expression, we could not find a single gene that did not oscillate,” Ptitsyn said.

Andrew Hyde | alfa
Further information:
http://www.ploscompbiol.org

Further reports about: Expression Ptitsyn circadian oscillate oscillation

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>