Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Finds That Circadian Rhythms Dominate All Life Functions, Play Significant Role In Metabolism

15.06.2007
New research from Colorado State University shows that the function of all genes in mammals is based on circadian – or daily – rhythms. The study, publishing in PLoS Computational Biology on June 15, refutes the current theory that only 10 percent to 15 percent of all genes were affected by nature’s clock. While scientists have long known that circadian rhythms regulate the behavior of the living, the study shows that daily rhythm dominates all life functions and particularly metabolism. The new study presents oscillation as a basic property of all genes in the organism as opposed to special function of some genes as previously believed.

Knowing about oscillation properties of genes involved in metabolism is essential for understanding how genes interact with and regulate health and disease. Colorado State University researcher Andrey Ptitsyn’s new analysis of data collected through several studies establishes a baseline oscillation in 98 to 99 percent of all genes through advanced computer algorithms. Most of these genes have never been previously reported as changing their expression level in a daily cycle. Some of these genes, considered “housekeeping,” have been used as a stable reference platform in gene expression studies.

“Anyone who diets, for example, knows you shouldn’t eat late, and now we are getting closer to understanding why exactly,” said Ptitsyn, a researcher in the Bioinformatics Center at the College of Veterinary Medicine and Biomedical Sciences. The center is located in the Department of Microbiology, Immunology and Pathology. “We discovered that all genes have a significant change in pattern of activity – or expression – throughout the day. Every pathway of gene expression is affected by circadian rhythms, and the timing of the rhythms from each group of genes that are synchronized is important.”

Ptitsyn also discovered alternative short and long copies of some genes oscillating in the opposite phase. These genes are essential components of leptin signaling system, responsible for the sensation of satiety after eating. The oscillating pattern varies in different organs and determines the effect of leptin on regulation of the energy balance. Better understanding gene oscillation may provide researchers with clues for developing ways to treat people who overeat because of impaired leptin signaling.

Circadian rhythms are biological rhythms that cycle over a period of about 24 hours and regulate timing for most physiological functions and behaviors such as sleeping, eating and activity.

As a checks-and-balances procedure, Ptitsyn analyzed the sets of data with several mathematical approaches to achieve the same results. The research also shows that gene oscillation is significantly more organized when mammals are exposed to regular periods of day and night. Oscillation can become chaotic in states of consistent lighting or lack of lighting, but it never stops.

Comparing the complex system in which the genes function to an AC power grid, Ptitsyn made the discovery by plotting the expression of 20,000 genes on a scale of frequency, or intensity, over a two day period and sorting them by phase or timing of oscillation. Where previous studies have failed, the Colorado State study uses advanced algorithms that have the capacity to identify patterns in such a large number of genes.

Ptitsyn discovered that gene activity oscillates in a “finely orchestrated” system and gene expression can be impacted by daylight and darkness – or a lack of both. For example, while gene expression oscillates in mice exposed to a constant state of dim light or darkness, the groups of genes that typically oscillate together – such as genes responsible for the function of an organ or a specific tissue – are chaotic under this state and don’t function as a group. Lack of orchestration can be easily confused with the lack of oscillation. This makes the rhythm much harder to detect.

“It’s like a conductor walking away from an orchestra during a performance; each musician continues to play, gradually going out of key with the others,” said Ptitsyn. That is one likely reason why researchers previously missed the impact of circadian rhythm on all genes.

Depending upon environmental factors, groups of genes can function in a synchronized manner, shifting in time against each other and working in what resembles a domino effect.

However, very few genes are found to be oscillating in the same phases in different tissues or organs. In fact, only about 5 percent of all genes fall into the same phase or timing of peaks and valleys. Synchronization with the activity of the other genes and genes in different organs is a very important and highly specific part of gene function.

In addition, genes can oscillate with different amplitude – the swing between the highest and the lowest point. Genes are expressed at very different levels, but most of them have the same relative change throughout the day. However, some genes show significant change in the amplitude in different organs or in response to a changing environment.

“When we standardize genes onto a common scale that measures levels of expression, we could not find a single gene that did not oscillate,” Ptitsyn said.

Andrew Hyde | alfa
Further information:
http://www.ploscompbiol.org

Further reports about: Expression Ptitsyn circadian oscillate oscillation

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>