Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MIT biologists link calorie restriction, endocrine function in worm longevity

Work advances study of aging

The link between calorie restriction and a longer, healthier life may lie in the head, not in the gut, MIT biologists report.

Dietary restriction extends lifespan and retards age-related disease in many species, although the phenomenon's underlying mechanisms remain a mystery. Underfeeding an organism such as the ordinary roundworm alters its endocrine function, which regulates hormones instrumental in metabolism. But no connection between the longevity induced by calorie restriction and the endocrine system has been found-until now.

In a recent issue of Nature, Leonard P. Guarente, Novartis Professor of Biology, and postdoctoral associate Nicholas A. Bishop show that a particular pair of neurons in the heads of underfed worms may play an essential role in their lengthy lives. When these two individual neurons were killed by a laser beam, the worms could not enjoy the longevity normally associated with calorie restriction.

... more about:
»Endocrine »Guarente »calorie »longevity »neurons

"This study directs our attention to the brain as a center for mediating the beneficial effects of calorie restriction in higher organisms, potentially including us," Guarente said. "A complete molecular understanding of calorie restriction may lead to new drugs for the major diseases of aging."

Restricting calories activates a gene in two neurons, Guarente and Bishop report. The gene, called skn-1, is found in a particular pair of sensory neurons in the head of the nematode worm Caenorhabditis elegans. These neurons are critical in translating information about food availability into endocrine signals. The neurons lead peripheral tissues to increase their metabolic activity, and this enhanced metabolism makes the worms live longer than normally fed counterparts.

In the study, the researchers also confirmed the results with a genetic test: They showed that skn-1 genes expressed only in these two cells support dietary-restriction longevity; without the genes, the longevity increase on dietary restriction disappeared. At the same time, the lack of skn-1 genes had little or no effect on the lifespan of worms whose calorie intake was not restricted, Guarente said.

"We suspect that the two neurons sense dietary restriction and secrete a hormone that increases metabolism-and life span-in the animal," he said.

Guarente, who published "Ageless Quest: One Scientist's Search for Genes that Prolong Youth" in 2003, discovered in 2000 that calorie restriction activates the silenced information regulator (SIR2) gene, which has the apparent ability to slow aging. This gene makes a protein called Sir2, which Guarente has shown is integrally tied to extending life span in yeast and in the roundworm. Humans carry a similar gene. How Sir2 relates to the two neurons identified in the findings is not yet clear, Guarente said.

Guarente suggests that the first commercial products based on manipulating Sir2 to slow aging will appear in the next 10 to 20 years. It is only a matter of time, he said, before aging itself is declared a disease.

This work is supported by the National Institutes of Health and the Glenn Foundation.

Deborah Halber | MIT News Office
Further information:

Further reports about: Endocrine Guarente calorie longevity neurons

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>