Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mother mice more attuned to pup sounds than others

12.06.2007
Researchers have shown for the first time that the behavioral context in which communication sounds are heard affects the brain's ability to detect, discriminate and ultimately respond to them. Specifically, the researchers found that the auditory neurons of female mice that had given birth were better at detecting and discriminating vocalizations from mouse pups than the auditory neurons in virgin females.

ÒAlthough there have been many studies on communication and neurons in animals, such as in primates, birds and bats, those studies have focused on how neurons respond to sounds that were already behaviorally relevant to the animals," says Robert Liu, PhD, Emory University assistant professor of biology and lead author of the study, which appears in the June 12, 2007 issue of PLoS Biology.

"What's different about this study is that we used natural vocalizationsÑa range of pup callsÑto see how well neurons in mother mice and virgin, or pup-na•ve mice, detect, discriminate and act on this behaviorally important sound,Ó says Dr. Liu. Ultrasonic calls emitted by mouse pups communicate distress and elicit a search and retrieval response from mothers.

Our current work demonstrates that the neural code for communication sounds in adult mammals can change, either because of experience or because of hormonal mechanisms, as the significance of the signal is acquired. This means that the brain can improve information processing for specific communicative functions," says Liu.

... more about:
»Communication »Liu »neurons »pup

Liu began the work as a postdoctoral fellow in the lab of senior author Christoph Schreiner, PhD, MD, professor and vice chair of otolaryngology, head and neck surgery and a member of the W.M. Keck Foundation Center for Integrative Neuroscience at the University of California, San Francisco.

In the study, the researchers determined that the neurons in the mothers' auditory cortex, an area of the brain that processes sounds, showed larger and earlier electrical spiking, or signaling, than in virgin mice, says Dr. Schreiner.

This shows, says Dr. Liu, that, "the timing plays an important role in the neural code of sounds. The idea that spike timing is important in brain processes has been around for a long time, but we're looking at it specifically in the context of natural communication. And we found that the big difference in encoding is the behavioral relevance of these sounds."

Although the pups' vocalizations vary quite a bit, Dr. Liu says the mothers can still detect the calls, understand them and take action. "What is really intriguing is that behavioral studies have shown that, if you look at vocalizations made by male adult mice, they also make very high-frequency vocalizations as do pups but the mothers don't react to them as they do to the pup calls," says Dr. Liu.

Along these lines, another behavioral study, reported by a team in Germany in 1987, revealed behavioral differences in mice in response to vocalizations. In this case, says Schreiner, there were two groups of mice: "the pup-na•ve mice and the mother mice who really care about these sounds." The researchers found that, "If you play these vocalizations, the mothers run over to get the pup. If it's a different sound, they don't go as often, and why should they? Likewise, the female mice who have not been mothers don't go to the source of the pup calls more often than to any other vocalization. They're the same age and same species, yet only one thing is different: one group has had pups and the other hasn't. It appears that a switch is thrown that improves sensitivity to these sounds in the mothers.Ó

Dr. Schreiner says further research is needed to determine whether mothers recognize pup sounds immediately after they become pregnant, meaning a hormonal switch has been thrown, or after they give birth. Recognition of pup cries after birth would indicate that exposure to the cries triggers mothers' attentiveness.

Dr. Schreiner likens the improved ability of mother mice to distinguish sounds to what adult humans experience when initially learning a foreign language. ÒWe go to a foreign country, hear what people are saying, but we can't make subtle discriminations of syllables in order to establish the border between words. With time and experience the brain is adjusting to this, our neurons are becoming more discriminative, and we can distinguish words in what initially just appeared to us as an unbroken stream of sound.Ó

According to the authors, this study helps demonstrate how important sounds are encoded in the normal brain but also has implications for developing therapeutic strategies in children and adults who suffer from speech-perception deficits.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

Further reports about: Communication Liu neurons pup

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>