Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mother mice more attuned to pup sounds than others

Researchers have shown for the first time that the behavioral context in which communication sounds are heard affects the brain's ability to detect, discriminate and ultimately respond to them. Specifically, the researchers found that the auditory neurons of female mice that had given birth were better at detecting and discriminating vocalizations from mouse pups than the auditory neurons in virgin females.

ÒAlthough there have been many studies on communication and neurons in animals, such as in primates, birds and bats, those studies have focused on how neurons respond to sounds that were already behaviorally relevant to the animals," says Robert Liu, PhD, Emory University assistant professor of biology and lead author of the study, which appears in the June 12, 2007 issue of PLoS Biology.

"What's different about this study is that we used natural vocalizationsÑa range of pup callsÑto see how well neurons in mother mice and virgin, or pup-na•ve mice, detect, discriminate and act on this behaviorally important sound,Ó says Dr. Liu. Ultrasonic calls emitted by mouse pups communicate distress and elicit a search and retrieval response from mothers.

Our current work demonstrates that the neural code for communication sounds in adult mammals can change, either because of experience or because of hormonal mechanisms, as the significance of the signal is acquired. This means that the brain can improve information processing for specific communicative functions," says Liu.

... more about:
»Communication »Liu »neurons »pup

Liu began the work as a postdoctoral fellow in the lab of senior author Christoph Schreiner, PhD, MD, professor and vice chair of otolaryngology, head and neck surgery and a member of the W.M. Keck Foundation Center for Integrative Neuroscience at the University of California, San Francisco.

In the study, the researchers determined that the neurons in the mothers' auditory cortex, an area of the brain that processes sounds, showed larger and earlier electrical spiking, or signaling, than in virgin mice, says Dr. Schreiner.

This shows, says Dr. Liu, that, "the timing plays an important role in the neural code of sounds. The idea that spike timing is important in brain processes has been around for a long time, but we're looking at it specifically in the context of natural communication. And we found that the big difference in encoding is the behavioral relevance of these sounds."

Although the pups' vocalizations vary quite a bit, Dr. Liu says the mothers can still detect the calls, understand them and take action. "What is really intriguing is that behavioral studies have shown that, if you look at vocalizations made by male adult mice, they also make very high-frequency vocalizations as do pups but the mothers don't react to them as they do to the pup calls," says Dr. Liu.

Along these lines, another behavioral study, reported by a team in Germany in 1987, revealed behavioral differences in mice in response to vocalizations. In this case, says Schreiner, there were two groups of mice: "the pup-na•ve mice and the mother mice who really care about these sounds." The researchers found that, "If you play these vocalizations, the mothers run over to get the pup. If it's a different sound, they don't go as often, and why should they? Likewise, the female mice who have not been mothers don't go to the source of the pup calls more often than to any other vocalization. They're the same age and same species, yet only one thing is different: one group has had pups and the other hasn't. It appears that a switch is thrown that improves sensitivity to these sounds in the mothers.Ó

Dr. Schreiner says further research is needed to determine whether mothers recognize pup sounds immediately after they become pregnant, meaning a hormonal switch has been thrown, or after they give birth. Recognition of pup cries after birth would indicate that exposure to the cries triggers mothers' attentiveness.

Dr. Schreiner likens the improved ability of mother mice to distinguish sounds to what adult humans experience when initially learning a foreign language. ÒWe go to a foreign country, hear what people are saying, but we can't make subtle discriminations of syllables in order to establish the border between words. With time and experience the brain is adjusting to this, our neurons are becoming more discriminative, and we can distinguish words in what initially just appeared to us as an unbroken stream of sound.Ó

According to the authors, this study helps demonstrate how important sounds are encoded in the normal brain but also has implications for developing therapeutic strategies in children and adults who suffer from speech-perception deficits.

Holly Korschun | EurekAlert!
Further information:

Further reports about: Communication Liu neurons pup

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>