Making new teeth

Using a combination of mouse mutant analyses, organ culture experiments, and gene expression studies, Xiu-Ping Wang and colleagues identify the key signaling molecules that regulate epithelial stem cell proliferation in the stem cell niche. Their work is published online this week in the open-access journal PLoS Biology.

The researchers show that signals from the adjacent mesenchymal tissue regulate epithelial stem cells and form a complex regulatory network with epithelial signals. They also show that spatial differences in the expression levels of two key genes, Activin and Follistatin, contribute to the characteristic asymmetry of rodent incisors, which are covered by enamel only on their labial (front) side. Subtle variations in this or related regulatory networks may explain the different regenerative capacities and asymmetric development of various organs and animal species.

Citation: Wang XP, Suomalainen M, Felszeghy S, Zelarayan LC, Alonso MT, et al. (2007) An integrated gene regulatory network controls stem cell proliferation in teeth. PLoS Biol 5(6): e159. doi:10.1371/journal.pbio.0050159.

CONTACT:
Irma Thesleff
University of Helsinki
Institute of Biotechnology
P.O. Box 56 (Viikinkaari 9)
Helsinki, FIN-00014 University of Helsinki
Finland
+358-9-191 59401
+358 9 19159366 (fax)
Irma.Thesleff@helsinki.fi

Media Contact

Natalie Bouaravong EurekAlert!

More Information:

http://www.plosbiology.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors