Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning the tables in chemistry

11.06.2007
Brandeis University revamping science education to attract more diverse students

What do glowing veggies have to do with a career in science" It just so happens that electrified pickles swimming in metal ions are one example of the type of undergraduate chemistry class demonstration that helps make a future in science a bright possibility, rather than a total turn-off, for many students.

In a commentary in this month’s Nature Chemical Biology, Brandeis University and Howard Hughes Medical Institute (HHMI) Professor Irving Epstein outlines a gathering storm clouding the future of U.S. science and prescribes a series of strategies to help avert a looming national crisis. Epstein says the continued success of U.S. science is seriously threatened by the fact that increasing numbers of undergraduates, particularly the disadvantaged, are writing off a career in science.

Why? Many students find introductory science, and chemistry in particular, both difficult and dull the way it is conventionally taught at the college level, discouraging many potential scientists before they ever have the chance to get hooked on science.

... more about:
»Epstein »disadvantaged »undergraduate

“Anyone who teaches an introductory science course at one of this country’s elite universities is familiar with the sea of white faces he or she encounters, and the tendency of that ocean to whiten even more as the semester progresses and as one moves up the ladder of courses,” writes Epstein, who last year won $1 million from HHMI to revamp introductory chemistry at Brandeis with an eye to luring—and retaining—more students in science, particularly disadvantaged ones.

“We need to ask ourselves why science is unattractive to so many students, particularly (but by no means exclusively), to underrepresented minority students,” writes Epstein. He believes that conventional science teaching and passive learning are primary culprits, because they rely too heavily on lecturing as well as unrelated and unexciting laboratory experiments.

Epstein proposes a variety of strategies aimed at capturing the imaginations of potential scientists, all of which maximize interaction among undergraduates, teachers, material, yes, even dill pickles, and contemporary technology, such as video games. The overall goal, says Epstein, is to bring the thrill of discovery and learning back into the science classroom.

But beyond that, Epstein’s HHMI project involves recruiting and retaining disadvantaged students in collaboration with the Posse Foundation, an organization that selects and trains “posses” of inner-city students to succeed in college. The students are chosen for their academic and leadership abilities. Epstein’s plan is to create a “science posse” at Brandeis each year that will build on the existing Posse program’s strengths but add features tailored specifically to science, such as a two-week pre-Brandeis “boot camp,” paid lab jobs, and academic support.

“If we can succeed in making chemistry more appealing to students by reawakening their instinctive curiosity about the world, and attract and retain more disadvantaged students in chemistry, the impact will be felt well beyond a single discipline, a single university, and a single nation,” says Epstein.

Laura Gardner | EurekAlert!
Further information:
http://www.brandeis.edu

Further reports about: Epstein disadvantaged undergraduate

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>