Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning the tables in chemistry

11.06.2007
Brandeis University revamping science education to attract more diverse students

What do glowing veggies have to do with a career in science" It just so happens that electrified pickles swimming in metal ions are one example of the type of undergraduate chemistry class demonstration that helps make a future in science a bright possibility, rather than a total turn-off, for many students.

In a commentary in this month’s Nature Chemical Biology, Brandeis University and Howard Hughes Medical Institute (HHMI) Professor Irving Epstein outlines a gathering storm clouding the future of U.S. science and prescribes a series of strategies to help avert a looming national crisis. Epstein says the continued success of U.S. science is seriously threatened by the fact that increasing numbers of undergraduates, particularly the disadvantaged, are writing off a career in science.

Why? Many students find introductory science, and chemistry in particular, both difficult and dull the way it is conventionally taught at the college level, discouraging many potential scientists before they ever have the chance to get hooked on science.

... more about:
»Epstein »disadvantaged »undergraduate

“Anyone who teaches an introductory science course at one of this country’s elite universities is familiar with the sea of white faces he or she encounters, and the tendency of that ocean to whiten even more as the semester progresses and as one moves up the ladder of courses,” writes Epstein, who last year won $1 million from HHMI to revamp introductory chemistry at Brandeis with an eye to luring—and retaining—more students in science, particularly disadvantaged ones.

“We need to ask ourselves why science is unattractive to so many students, particularly (but by no means exclusively), to underrepresented minority students,” writes Epstein. He believes that conventional science teaching and passive learning are primary culprits, because they rely too heavily on lecturing as well as unrelated and unexciting laboratory experiments.

Epstein proposes a variety of strategies aimed at capturing the imaginations of potential scientists, all of which maximize interaction among undergraduates, teachers, material, yes, even dill pickles, and contemporary technology, such as video games. The overall goal, says Epstein, is to bring the thrill of discovery and learning back into the science classroom.

But beyond that, Epstein’s HHMI project involves recruiting and retaining disadvantaged students in collaboration with the Posse Foundation, an organization that selects and trains “posses” of inner-city students to succeed in college. The students are chosen for their academic and leadership abilities. Epstein’s plan is to create a “science posse” at Brandeis each year that will build on the existing Posse program’s strengths but add features tailored specifically to science, such as a two-week pre-Brandeis “boot camp,” paid lab jobs, and academic support.

“If we can succeed in making chemistry more appealing to students by reawakening their instinctive curiosity about the world, and attract and retain more disadvantaged students in chemistry, the impact will be felt well beyond a single discipline, a single university, and a single nation,” says Epstein.

Laura Gardner | EurekAlert!
Further information:
http://www.brandeis.edu

Further reports about: Epstein disadvantaged undergraduate

More articles from Life Sciences:

nachricht Study suggests oysters offer hot spot for reducing nutrient pollution
17.10.2017 | Virginia Institute of Marine Science

nachricht World first for reading digitally encoded synthetic molecules
17.10.2017 | CNRS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>