Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers shed light on shrinking of chromosomes

11.06.2007
Late shortening of chromosomes helps cells to organise and protect their DNA during cell division

A human cell contains an enormous 1.8 metres of DNA partitioned into 46 chromosomes. These have to be copied and distributed equally into two daughter cells at every division. Condensation, the shortening of chromosomes, allows the cell to handle such huge amounts of genetic material during cell division and helps preventing fatal defects in chromosome separation. Now researchers from the European Molecular Biology Laboratory (EMBL) for the first time tracked chromosome condensation in mammalian cells over the entire course of cell division. In this week’s advanced online publication of Nature Cell Biology they report crucial new insights into timing, function and molecular basis of chromosome condensation.

What happens when chromosomes are not correctly separated and distributed during cell division we know very well; two daughter cells with either broken chromosomes or different numbers of chromosomes result and severe diseases including cancer can arise. But so far we know only little about condensation, a process crucial to the successful separation of chromosomes. Using powerful microscopes, researchers led by Jan Ellenberg at EMBL looked at living mammalian cells to find out how and when chromosomes shorten during cell division.

Condensation begins early, when the cell starts preparing for division, and the chromosomes become shorter and shorter until they are about to separate and migrate towards the poles of the cell.

... more about:
»Researchers »Separation »condensation »defects

“It is at this stage that textbooks say chromosomes are shortest. Then, after separating they would expand again,” says Ellenberg. “But we found something very different. Shortly after they finish separating, chromosomes actually condense even further. This makes sense, because in this way they are shortest when the physical division of one cell body into two takes place. Like this, no long chromosome arms extend over the plane of division, because that could expose the DNA to serious mechanical damage.”

The extreme condensation of chromosomes towards the end of cell division can also serve as a safety net if something goes wrong with chromosome separation in earlier phases of division. When the researchers added chemicals to the cell to block the late condensation, more separation defects appeared.

“Sometimes chromosomes get stuck and cannot be fully separated by the spindle that normally distributes them into the daughter cells,” says Felipe Mora-Bermúdez, who carried out the experiments in Ellenberg’s lab, “we think that the ‘super condensation’ at later stages helps to disentangle such chromosomes and acts as a back-up mechanism to rescue separation defects.”

The EMBL researchers found that an enzyme called Aurora kinase is crucially involved in this process. Blocking this enzyme abolishes late condensation of chromosomes. They now hope to uncover the detailed molecular mechanism underlying the late shortening of chromosomes. This could further advance our understanding of cell division and the risk factors that lead to defects in chromosome separation and their dramatic consequences.

Anna-Lynn Wegener | alfa
Further information:
http://www.embl.org/aboutus/news/press/2007/10jun07/

Further reports about: Researchers Separation condensation defects

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>