Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moss genes provided fuse for plant life explosion

11.06.2007
Scientists from the John Innes Centre have identified the genes that control the development of root hairs on plants. Published in the journal Science, Professor Liam Dolan reports that these genes are also found in moss, a finding that changes our understanding of how the plants we see today evolved over 400 million years ago.

Plants use roots to anchor themselves, and to absorb nutrients. Root hairs are single cells that grow from the roots and greatly increase the root’s surface area. The researchers identified a pair of genes that are required for root hairs to grow. When these genes were turned off, plants produced hairless roots.

Not all plants have roots. Evolutionarily ancient plants like mosses instead grow cells called caulonema and rhizoids. Caulonemal cells increase the surface area for nutrient absorption, and rhizoids provide anchorage. The scientists found that the genes that control root hair growth are very similar to the genes that regulate the development of caulonema and rhizoids in the moss Physcomitrella patens. In fact, they were able to replace the genes they turned off in plants with the equivalent genes from moss, and produce hairy roots. However, caulonema and rhizoids are not the same as root hairs; the major difference being that root hairs are diploid, having two copies of each chromosome, whilst the moss cells have one (haploid).

The number of chromosomes represents one of the major differences between mosses and other land plants. Moss exists with one chromosome for the majority of its lifecycle; only during its reproductive stage does it have two copies of its chromosomes. The plants that evolved from these organisms have pairs of chromosomes for the majority of their life cycle. With this change in the dominant part of the life cycle came an enormous increase in the size and diversity of plants known as the Devonian explosion, which started around 400 million years ago. The great variety of plant life that we see today evolved during this period of time. The invasion of the land by these plants fundamentally changed the existing ecosystems, and brought about pronounced climate change.

... more about:
»Chromosome »genes »rhizoids

This study, involving collaboration with the University of Lausanne, provides some information on the genetic basis of this Devonian explosion. It shows that genes from one stage in the life cycle were recruited by their descendants into another part of the life cycle. The development of root hairs helped the evolution of larger plants by increasing their nutrient uptake ability and anchorage. “These results give us a model for the genetic changes that underpinned the dramatic changes in plant stature that occurred during Devonian explosion 400 million years ago. We are now getting an insight in to the genetic fuse to that bang which had such dramatic climatic consequences” said Professor Dolan.

Zoe Dunford | alfa
Further information:
http://www.bbsrc.ac.uk
http://www.jic.ac.uk

Further reports about: Chromosome genes rhizoids

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>