Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Flowering Switch Could Help Feed The World

The operation of a vital switch for controlling crop productivity has been identified following a 70 year search.

The ability to produce more food in the same acreage is crucial to feeding an increasing world population at the same time as curbing deforestation and dedicating more land to biofuels.

Scientists at the John Innes Centre have identified how the signal that controls flowering is delivered to the shoot apex. Flowering is the process that delivers food from crops.

“Flowering produces fruit, as well as seeds that are the raw ingredient for all cereal based foods”, said Dr Philip Wigge, lead author on the paper, to be published in Current Biology next Friday. “Controlling flowering means that we have the fundamental understanding needed to increase the productivity of rice, maize, wheat or any other crop by increasing the number of flowering cycles in a year.

... more about:
»APEX »Flowering »crop »identified

“We can also switch off the signal to prevent flowering and therefore increase biomass for fuel production”.

In the horticultural industry, the findings could be used to keep gardens in bloom for longer.

It has been known for more than 70 years that leaves exposed to light can trigger flowering in a darkened shoot. Research published by John Innes Centre scientists and a Swedish team in 2005 revealed the gene FLOWERING LOCUS T (FT) as essential to the process. But how the signal, dubbed “florigen”, travels from leaf to apex has remained a mystery.

One lab suggested messenger RNA was responsible, but that research was retracted last month. Other recent papers published in the journal Science from the Max Planck Institute identified the signal as FT protein, the protein encoded by the FT gene, and Japan’s Nara Institute of Science and Technology have shown the same system exists in rice.

This latest research confirms that FT protein is responsible, but also shows that it is able to move between cells from the leaf to the apex. Experiments with an immobile FT protein showed that the movement of the protein is crucial for flower development.

“Plants may be rooted to the spot”, said Dr Wigge. “But for the first time we have shown that long range communication within plants is essential for their development and reproduction.

“These findings provide the tools to prolong or change flowering time. The full potential of that discovery can now be realised by the agricultural and horticultural industries.”

Zoe Dunford | alfa
Further information:

Further reports about: APEX Flowering crop identified

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>