Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flowering Switch Could Help Feed The World

01.06.2007
The operation of a vital switch for controlling crop productivity has been identified following a 70 year search.

The ability to produce more food in the same acreage is crucial to feeding an increasing world population at the same time as curbing deforestation and dedicating more land to biofuels.

Scientists at the John Innes Centre have identified how the signal that controls flowering is delivered to the shoot apex. Flowering is the process that delivers food from crops.

“Flowering produces fruit, as well as seeds that are the raw ingredient for all cereal based foods”, said Dr Philip Wigge, lead author on the paper, to be published in Current Biology next Friday. “Controlling flowering means that we have the fundamental understanding needed to increase the productivity of rice, maize, wheat or any other crop by increasing the number of flowering cycles in a year.

... more about:
»APEX »Flowering »crop »identified

“We can also switch off the signal to prevent flowering and therefore increase biomass for fuel production”.

In the horticultural industry, the findings could be used to keep gardens in bloom for longer.

It has been known for more than 70 years that leaves exposed to light can trigger flowering in a darkened shoot. Research published by John Innes Centre scientists and a Swedish team in 2005 revealed the gene FLOWERING LOCUS T (FT) as essential to the process. But how the signal, dubbed “florigen”, travels from leaf to apex has remained a mystery.

One lab suggested messenger RNA was responsible, but that research was retracted last month. Other recent papers published in the journal Science from the Max Planck Institute identified the signal as FT protein, the protein encoded by the FT gene, and Japan’s Nara Institute of Science and Technology have shown the same system exists in rice.

This latest research confirms that FT protein is responsible, but also shows that it is able to move between cells from the leaf to the apex. Experiments with an immobile FT protein showed that the movement of the protein is crucial for flower development.

“Plants may be rooted to the spot”, said Dr Wigge. “But for the first time we have shown that long range communication within plants is essential for their development and reproduction.

“These findings provide the tools to prolong or change flowering time. The full potential of that discovery can now be realised by the agricultural and horticultural industries.”

Zoe Dunford | alfa
Further information:
http://www.jic.ac.uk/corporate/index.htm

Further reports about: APEX Flowering crop identified

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>