Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Smart' mice teach scientists about learning process, brain disorders

30.05.2007
Mice genetically engineered to lack a single enzyme in their brains are more adept at learning than their normal cousins, and are quicker to figure out that their environment has changed, a team led by researchers at UT Southwestern Medical Center has found.

The results, appearing today in the online edition of the journal Nature Neuroscience, reveal a new mechanism of learning in the brain, which might serve in humans as a target for treating disorders such as post-traumatic stress disorder, Alzheimer’s disease or drug addiction, the researchers said.

“It’s pretty rare that you make mice ‘smarter,’ so there are a lot of cognitive implications,” said Dr. James Bibb, assistant professor of psychiatry and the study’s senior author.

“Everything is more meaningful to these mice,” he said. “The increase in sensitivity to their surroundings seems to have made them smarter.”

The engineered mice were more adept at learning to navigate a water maze and remembering that being in a certain box involves a mild shock. Equally important, Dr. Bibb said, when a situtation changed, such as the water maze being rearranged, the engineered mice were much faster to realize that things were different and work out the new route.

... more about:
»BIBB »Cdk5 »Psychiatry »disorder

Dr. Bibb cautioned that while the mice learn faster, studies on the long-term effects of deleting the enzyme, called Cdk5, from the brain are continuing.

The group is also beginning a search for drugs that might create the same effects without genetic manipulation and monitoring the animals’ health and behavior over time.

The findings may have applications in treating post-traumatic stress disorder, where getting a patient to learn that a once-threatening situation no longer poses a danger is a major goal.

In addition, Cdk5 is heavily implicated in Alzheimer’s disease and addiction to drugs of abuse, so understanding how the enzyme affects the brain and behavior might aid in the development of new treatments for these and other conditions, Dr. Bibb said.

The key in this study was being able to “knock out” the gene for Cdk5 only in the brain, and only when the mice were adults. This technique, only recently developed and called conditional knockout, allows much more sophisticated experiments than traditional knockout, which entirely eliminates the gene.

“Being able to turn a gene off throughout a brain is a really advanced thing to do,” Dr. Bibb said. “It’s been shown that it can be done, but we put the system together and actually applied it.”

Normally, Cdk5 works with another enzyme to break up a molecule called NR2B, which is found in nerve-cell membranes and stimulates the cell to fire when a nerve-cell-signaling molecule, or neurotransmitter, binds to it. NR2B previously has been implicated in the early stages of learning.

The new research showed that when Cdk5 is removed from the brain, the levels of NR2B significantly increase, and the mice are primed to learn, Dr. Bibb said.

“We made the animals ‘smarter,’ but in doing so and applying this technology, we also found biochemical targets that hold promise for future treatments of a variety of cognitive disorders,” he said.

The researchers also recorded nerve-cell firings in the hippocampus, an area of the brain associated with learning. Hippocampus slices from the knock-out mice responded much more strongly to an electrical stimulation, supporting the finding that the mice were more prepared to learn.

Other UT Southwestern researchers involved in the study were Ammar Hawasli, David Benavides and Chan Nguyen, students in the Medical Scientist Training Program; Dr. Janice Kansy, instructor in psychiatry; Dr. Kanehiro Hayashi, postdoctoral researcher in psychiatry; Dr. Craig Powell, assistant professor of neurology; and Dr. Donald Cooper, assistant professor of psychiatry. Researchers from the Institut de Génétique et de Biologie Moléculaire et Cellulaire in Strausbourg, France, and The Rockefeller University also participated.

The work was supported by the National Institute on Drug Abuse, the National Institutes of Health, NARSAD, the National Institute of Mental Health and the Ella McFadden Charitable Trust Fund at the Southwestern Medical Foundation.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: BIBB Cdk5 Psychiatry disorder

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>