Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-State biologist hopes mosquito can break viral chain

23.05.2007
Most people do their best to avoid mosquitoes. But this summer Rollie Clem will play the wary host to his own homegrown swarm of Aedes aegypti, the yellow fever mosquito. He's made a room ready for them, and even a menu.

"Sheep's blood or cow's blood," said Clem, an associate professor of biology at Kansas State University. "This particular species is less finicky than others," so Clem won't need to stock their cages with sweaty socks. (Some mosquitoes won't feed without the persuasive scent of humans in the air.)

Clem, who studies molecular virology, is going out of his way to accommodate A. aegypti in hopes of learning more about how viruses disrupt the programmed death of cells, or apoptosis.

"Millions of cells are dying at any given moment in our body," Clem said. "And that's a good thing."

... more about:
»aegypti »apoptosis »mosquito

Programmed cell death is tidier than necrosis, in which injury prompts inflammatory cells to rush in and clean up. In contrast, apoptosis relies on a cell's genes to trigger an orderly disassembly.

It's the body's way of removing tissue that has done its job, such as the webbing between the developing fingers of an embryo, or cells whose DNA is damaged. Malfunctions in apoptosis are associated with cancer, neurological diseases such as Alzheimer's and immune disorders such as AIDS and rheumatoid arthritis.

Though scientists knew of apoptosis as long ago as the late 1800s, interest in the field has intensified only in the last 15 years, Clem said.

"It was very obscure" when he was a graduate student at the University of Georgia in the early 1990s, he said. "Now it's taught to undergraduates."

Clem's current experiment, helped by a grant from the National Institutes of Health, grew from his work with moths that were naturally immune to fatal viruses. Clem chose A. aegypti for this round because it spreads such diseases as dengue fever, the most important of the world's mosquito-borne viruses. The Centers for Disease Control estimate that 100 million cases occur annually.

But the mosquito's effectiveness in spreading the disease varies from place to place. Clem wants to find out whether apoptosis plays a role in that variability.

Once his mosquitoes are safely housed in their lab, Clem plans to infect them with genetically altered strains of Sindbis, a virus related to those that cause equine encephalitis. Some strains will contain genes that block apoptosis, Clem said, and others will encourage the process.

He will go on to test other mosquitoes with unaltered strains of Sindbis. The results should suggest whether A. aegypti can be made immune to viruses.

Clem stresses that A. aegypti's living arrangements will be anything but casual. His lab's insectary is approved by the CDC to conform to "arthropod containment level 2," which specifies such things as screened drainage, extensive caulking, and heat-sterilization of equipment and waste. So whatever you're swatting this summer, it won't be one of Clem's mosquitoes.

"Our work will be taking place in a very secure environment," he said.

In the Western Hemisphere, A. aegypti is widespread in Latin America but occupies only bits of the southern United States, particularly south Florida. The species has made a comeback since eradication programs ended in the 1970s, and dengue fever has expanded along with it.

In Kansas, Culex tarsalis and other members of the Culex group do most of the biting. They don't transmit dengue, but C. tarsalis is known to spread West Nile and western equine encephalitis. The world's most troublesome mosquito-borne disease, malaria, is spread by Anopheles gambiae.

One of Clem's students is investigating a dozen or so genes in A. aegypti because of their similarity to genes that control apoptosis in the fruit fly. "But even in humans, the genes are similar in their sequence," Clem said. This phenomenon of "gene homology" means that insects have a lot to tell the species on the other end of the microscope about its own genetic workings.

Rollie Clem | EurekAlert!
Further information:
http://www.k-state.edu/

Further reports about: aegypti apoptosis mosquito

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>