Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-State biologist hopes mosquito can break viral chain

23.05.2007
Most people do their best to avoid mosquitoes. But this summer Rollie Clem will play the wary host to his own homegrown swarm of Aedes aegypti, the yellow fever mosquito. He's made a room ready for them, and even a menu.

"Sheep's blood or cow's blood," said Clem, an associate professor of biology at Kansas State University. "This particular species is less finicky than others," so Clem won't need to stock their cages with sweaty socks. (Some mosquitoes won't feed without the persuasive scent of humans in the air.)

Clem, who studies molecular virology, is going out of his way to accommodate A. aegypti in hopes of learning more about how viruses disrupt the programmed death of cells, or apoptosis.

"Millions of cells are dying at any given moment in our body," Clem said. "And that's a good thing."

... more about:
»aegypti »apoptosis »mosquito

Programmed cell death is tidier than necrosis, in which injury prompts inflammatory cells to rush in and clean up. In contrast, apoptosis relies on a cell's genes to trigger an orderly disassembly.

It's the body's way of removing tissue that has done its job, such as the webbing between the developing fingers of an embryo, or cells whose DNA is damaged. Malfunctions in apoptosis are associated with cancer, neurological diseases such as Alzheimer's and immune disorders such as AIDS and rheumatoid arthritis.

Though scientists knew of apoptosis as long ago as the late 1800s, interest in the field has intensified only in the last 15 years, Clem said.

"It was very obscure" when he was a graduate student at the University of Georgia in the early 1990s, he said. "Now it's taught to undergraduates."

Clem's current experiment, helped by a grant from the National Institutes of Health, grew from his work with moths that were naturally immune to fatal viruses. Clem chose A. aegypti for this round because it spreads such diseases as dengue fever, the most important of the world's mosquito-borne viruses. The Centers for Disease Control estimate that 100 million cases occur annually.

But the mosquito's effectiveness in spreading the disease varies from place to place. Clem wants to find out whether apoptosis plays a role in that variability.

Once his mosquitoes are safely housed in their lab, Clem plans to infect them with genetically altered strains of Sindbis, a virus related to those that cause equine encephalitis. Some strains will contain genes that block apoptosis, Clem said, and others will encourage the process.

He will go on to test other mosquitoes with unaltered strains of Sindbis. The results should suggest whether A. aegypti can be made immune to viruses.

Clem stresses that A. aegypti's living arrangements will be anything but casual. His lab's insectary is approved by the CDC to conform to "arthropod containment level 2," which specifies such things as screened drainage, extensive caulking, and heat-sterilization of equipment and waste. So whatever you're swatting this summer, it won't be one of Clem's mosquitoes.

"Our work will be taking place in a very secure environment," he said.

In the Western Hemisphere, A. aegypti is widespread in Latin America but occupies only bits of the southern United States, particularly south Florida. The species has made a comeback since eradication programs ended in the 1970s, and dengue fever has expanded along with it.

In Kansas, Culex tarsalis and other members of the Culex group do most of the biting. They don't transmit dengue, but C. tarsalis is known to spread West Nile and western equine encephalitis. The world's most troublesome mosquito-borne disease, malaria, is spread by Anopheles gambiae.

One of Clem's students is investigating a dozen or so genes in A. aegypti because of their similarity to genes that control apoptosis in the fruit fly. "But even in humans, the genes are similar in their sequence," Clem said. This phenomenon of "gene homology" means that insects have a lot to tell the species on the other end of the microscope about its own genetic workings.

Rollie Clem | EurekAlert!
Further information:
http://www.k-state.edu/

Further reports about: aegypti apoptosis mosquito

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>