Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-State biologist hopes mosquito can break viral chain

23.05.2007
Most people do their best to avoid mosquitoes. But this summer Rollie Clem will play the wary host to his own homegrown swarm of Aedes aegypti, the yellow fever mosquito. He's made a room ready for them, and even a menu.

"Sheep's blood or cow's blood," said Clem, an associate professor of biology at Kansas State University. "This particular species is less finicky than others," so Clem won't need to stock their cages with sweaty socks. (Some mosquitoes won't feed without the persuasive scent of humans in the air.)

Clem, who studies molecular virology, is going out of his way to accommodate A. aegypti in hopes of learning more about how viruses disrupt the programmed death of cells, or apoptosis.

"Millions of cells are dying at any given moment in our body," Clem said. "And that's a good thing."

... more about:
»aegypti »apoptosis »mosquito

Programmed cell death is tidier than necrosis, in which injury prompts inflammatory cells to rush in and clean up. In contrast, apoptosis relies on a cell's genes to trigger an orderly disassembly.

It's the body's way of removing tissue that has done its job, such as the webbing between the developing fingers of an embryo, or cells whose DNA is damaged. Malfunctions in apoptosis are associated with cancer, neurological diseases such as Alzheimer's and immune disorders such as AIDS and rheumatoid arthritis.

Though scientists knew of apoptosis as long ago as the late 1800s, interest in the field has intensified only in the last 15 years, Clem said.

"It was very obscure" when he was a graduate student at the University of Georgia in the early 1990s, he said. "Now it's taught to undergraduates."

Clem's current experiment, helped by a grant from the National Institutes of Health, grew from his work with moths that were naturally immune to fatal viruses. Clem chose A. aegypti for this round because it spreads such diseases as dengue fever, the most important of the world's mosquito-borne viruses. The Centers for Disease Control estimate that 100 million cases occur annually.

But the mosquito's effectiveness in spreading the disease varies from place to place. Clem wants to find out whether apoptosis plays a role in that variability.

Once his mosquitoes are safely housed in their lab, Clem plans to infect them with genetically altered strains of Sindbis, a virus related to those that cause equine encephalitis. Some strains will contain genes that block apoptosis, Clem said, and others will encourage the process.

He will go on to test other mosquitoes with unaltered strains of Sindbis. The results should suggest whether A. aegypti can be made immune to viruses.

Clem stresses that A. aegypti's living arrangements will be anything but casual. His lab's insectary is approved by the CDC to conform to "arthropod containment level 2," which specifies such things as screened drainage, extensive caulking, and heat-sterilization of equipment and waste. So whatever you're swatting this summer, it won't be one of Clem's mosquitoes.

"Our work will be taking place in a very secure environment," he said.

In the Western Hemisphere, A. aegypti is widespread in Latin America but occupies only bits of the southern United States, particularly south Florida. The species has made a comeback since eradication programs ended in the 1970s, and dengue fever has expanded along with it.

In Kansas, Culex tarsalis and other members of the Culex group do most of the biting. They don't transmit dengue, but C. tarsalis is known to spread West Nile and western equine encephalitis. The world's most troublesome mosquito-borne disease, malaria, is spread by Anopheles gambiae.

One of Clem's students is investigating a dozen or so genes in A. aegypti because of their similarity to genes that control apoptosis in the fruit fly. "But even in humans, the genes are similar in their sequence," Clem said. This phenomenon of "gene homology" means that insects have a lot to tell the species on the other end of the microscope about its own genetic workings.

Rollie Clem | EurekAlert!
Further information:
http://www.k-state.edu/

Further reports about: aegypti apoptosis mosquito

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>