Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV’s effect on white blood cells questioned by new research

22.05.2007
Scientists have refuted a longstanding theory of how HIV slowly depletes the body’s capacity to fight infection, in new research published today.

The researchers were looking at T helper cells, a class of white blood cells which recognise infection and co-ordinate the body’s immune defences. They are attacked by HIV, and their numbers gradually decline in HIV positive patients. It has long been a major puzzle why this process of depletion is so slow, often taking 10 years or more.

One popular theory has been the “runaway” hypothesis, which says that T cells infected by HIV produce more HIV virus particles, which activate more T cells, that in turn become infected, leading to an uncontrolled cycle of T cell activation, infection, HIV production and cell destruction.

However, today’s new study in PLoS Medicine shows that this theory cannot explain the very slow pace of depletion that occurs in HIV infection. The research team used a mathematical model of the processes by which T cells are produced and eliminated to show that if the runaway theory was correct, then T helper cell numbers would fall to very low levels over a number of months, not years.

... more about:
»HIV »Theory »white blood cell

One of the paper’s authors is Jaroslav Stark, Professor of Mathematics at Imperial College London, and Director of the Centre of Integrative Systems Biology at Imperial. He said: “Scientists have never had a full understanding of the processes by which T helper cells are depleted in HIV, and therefore they’ve been unable to fully explain why HIV destroys the body’s supply of these cells at such a slow rate. Our new interdisciplinary research has thrown serious doubt on one popular theory of how HIV affects these cells, and means that further studies are required to understand the mechanism behind HIV’s distinctive slow process of cellular destruction.”

The research team think that one possible explanation could be that the virus slowly adapts itself over the course of the infection, but they stress that further analysis is needed to verify this alternative theory.

Professor Stark adds: “If the specific process by which HIV depletes this kind of white blood cells can be identified, it could pave the way for potential new approaches to treatment.”

Danielle Reeves | alfa
Further information:
http://www.imperial.ac.uk

Further reports about: HIV Theory white blood cell

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>