Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of protein folds offers insight into metabolic evolution

18.05.2007
Researchers at the University of Illinois have constructed the first global family tree of metabolic protein architecture.
Their approach offers a new window on the evolutionary history of metabolism.

The study appears this week in the online edition of the Proceedings of the National Academy of Sciences.

Their work relies on established techniques of phylogenetic analysis developed in the past decade to plot the evolution of genes and organisms but which have never before been used to work out the evolutionary history of protein architecture across biological networks.

"We are interested in how structure evolves, not how organisms evolve," said Gustavo Caetano-Anollés, principal researcher on the study, which was co-written by graduate student Hee Shin Kim and emeritus professor of cell and developmental biology Jay E. Mittenthal. "We are using the techniques of phylogenetic analysis that systematicists used to build the tree of life, and we are applying it to a biochemical problem, a systems biology problem."

To get at the roots of protein evolution, the researchers examined metabolic proteins at the level of their component structures: easily recognizable folds in the proteins that have known enzymatic activities. These protein domains catalyze a range of functions, breaking down or combining metabolites, small molecules that include the building blocks of all life.

Their findings relied on a fundamental assumption: that the most widely utilized protein folds (they looked at proteins in more than 200 species) were also the most ancient.

"Protein architecture has preserved ancient structural designs as fossils of ancient biochemistries," the authors wrote.

The team used data from two international compilations of genetic and proteomic
information: the metabolic pathways database of the Kyoto Encyclopedia of Genes and Genomes, and the Structural Classification of Proteins database. They combined these two data sets with phylogenetic reconstructions, or family trees, of protein fold architectures in metabolism. They created a new database, called the Molecular Ancestry Network (MANET) which links these data sources into a new global network diagram of metabolic pathways.

The researchers added color, representing evolutionary age, to their diagrams of metabolic networks (for an example, see the purine metabolism network in MANET). The result is a multicolored mosaic of protein fold evolution.
The mosaic shows that modern metabolic networks - and even individual enzymes - are composed of both very ancient and much more recent protein architectures.

"This mosaic is telling you that the new enzymes and old enzymes are together performing side by side," Caetano-Anollés said. "In some cases in the same protein you have old domains and new domains working together."

This finding supports the hypothesis that protein architectures that perform one function are often recruited to perform new tasks.

The new, global family tree of protein architecture also revealed that many metabolic protein folds are quite ancient: These architectures were found to be quite common in all the species of bacteria, animals, plants, fungi, protists and archaea the researchers analyzed.

Of 776 metabolic protein folds surveyed, 16 were found to be omnipresent, and nine of those occurred in the earliest branches of the newly constructed tree.

"These nine ancient folds represent architectures of fundamental importance undisputedly encoded in a genetic core that can be traced back to the universal ancestor of the three superkingdoms of life," the authors wrote.

The analysis also found that the most ancient metabolic protein folds are important to RNA metabolism, specifically the interconversion of the purine and pyrimidine nucleotides that compose the core of the RNA molecule.

This discovery supports the hypothesis of an RNA world in which RNA molecules were among the earliest catalysts of life. This idea is based in part on the observation that RNA still retains many of its catalytic capabilities, including the ability to make proteins. Gradually, according to this theory, proteins began taking over some of the original functions of RNA.

"The most ancient (protein) molecules were involved in the interconversion of nucleotides. But they were not synthesizing them," Caetano-Anollés said. "We see that all the enzymes that were involved in purine synthesis, for example, were very recent. Since these first proteins benefited the formation of building blocks for the primitive RNA world, it makes a lot of sense that we've found this origin encased in nucleotide metabolism."

Caetano-Anollés and Mittenthal are also affiliated with the Institute for Genomic Biology.

This research was supported in part with funds from the U. of I. at Urbana-Champaign, the Office of Naval Research and the National Science Foundation.

Editor's note: To reach Gustavo Caetano-Anollés, call 217-333-8172; e-mail:
gca@uiuc.edu.

Diana Yates | University of Illinois
Further information:
http://www.uiuc.edu

Further reports about: Caetano-Anollés Nucleotide Protein RNA fold metabolic metabolism

More articles from Life Sciences:

nachricht Opening the cavity floodgates
23.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Incentive to Move
23.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Enhanced ball screw drive with increased lifetime through novel double nut design

23.01.2018 | Machine Engineering

Optical Nanoscope Allows Imaging of Quantum Dots

23.01.2018 | Physics and Astronomy

Incentive to Move

23.01.2018 | Life Sciences

VideoLinks Science & Research
Overview of more VideoLinks >>>