Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fingerprint instead of Blood Sample

18.05.2007
Antibody tests on fingerprints to detect drugs and diseases

To this day, fingerprints are just the thing when a perpetrator needs to be arrested or a person needs to be identified. British scientists working with David A. Russell also want to make it possible to use fingerprints to reveal drug and doping transgressions and to diagnose diseases. As the team from the University of East Anglia in Norwich and King’s College in London report in the journal Angewandte Chemie, they have now been able to use specific antibodies to differentiate between the fingerprints of smokers and nonsmokers.

A fingerprint is of no use to an investigator unless it can be matched to one in a database or can be directly compared with that of a suspect. Russell and his team expect that we will soon be able to gain information about the lifestyle of the person who made the fingerprints, which could shrink the pool of suspects. In this way, it should be possible to use fingerprints to detect drugs, medications, or food that have been consumed, and also to diagnose some diseases.

Researchers want to coax all of these secrets out of the tiny traces of perspiration that a fingerprint leaves on a surface. The research team demonstrated the ease with which this should be possible by differentiating between fingerprints made by smokers and nonsmokers. To avoid false results from chance contact with tobacco products, they designed their system to detect cotinine, a metabolite formed by the body after consumption of nicotine. The researchers wet the fingerprints with a solution containing gold nanoparticles to which cotinine-specific antibodies were attached. These bind to the cotinine. Subsequently, a second antibody, which was tagged with a fluorescent dye and binds specifically to cotinine antibodies, was applied to the fingerprint. Because there are many cotinine antibodies attached to each nanosphere, there is a significant amplification effect.

... more about:
»Antibodies »cotinine »possible

Indeed, the ridge patterns of smokers’ fingerprints fluoresce, while those of nonsmokers do not. The fingerprints are very highly resolved and can be lifted for comparison with known prints, just as in conventional procedures. When magnified, even the tiny sweat pores along the ridges of the fingertip become visible, which can also be used to make an unambiguous assignment.

In addition to forensic applications, this method would be ideal for detecting doping. Sample manipulations by the test subjects would hardly be possible since each sample is uniquely assignable to a specific athlete by virtue of the ridge pattern. Medical diagnostics could also benefit in the form of simple and quick mass screening with no danger of sample mix-ups. Another application could be drug screening without taking blood samples—from suspicious drivers, for example.

Author: David A. Russell, University of East Anglia, Norwich (UK), http://www1.uea.ac.uk/cm/home/schools/sci/cap/people/faculty/dar

Title: "Intelligent" Fingerprinting: Simultaneous Identification of Drug Metabolites and Individuals with Antibody-Functionalized Nanoparticles

Angewandte Chemie International Edition 2007, 46, No. 22, 4100–4103, doi: 10.1002/anie.200700217

David A. Russell | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www1.uea.ac.uk/cm/home/schools/sci/cap/people/faculty/dar

Further reports about: Antibodies cotinine possible

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>