Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fatty acid catabolism higher due to polyphenol intake

15.05.2007
Polyphenols, dietary substances from vegetables, fruits and green tea, bring about a change in the energy metabolism. Dutch researcher Vincent de Boer has discovered that polyphenols increase the fatty acid breakdown in rats and influence the glucose use in fat cells.

De Boer carried out his doctoral research at RIKILT - Institute of Food Safety in Wageningen. Much research into the health effects of polyphenols is carried out in vitro. However in the body, polyphenols are quickly and easily converted into polyphenol metabolites. This research was carried out with rats to study the mechanisms and effects of a polyphenol-rich diet. Relevant polyphenol metabolites that are found in humans were also examined.

Quercetin is a polyphenol that is highly abundant in the human diet, such as onions, apples and tea. The study revealed that quercetin metabolites mainly end up in the lungs of rats. Subsequently De Boer discovered that lung cells had a greater fatty acid catabolism if the animals constantly received quercetin in their feed.

Energy regulation

... more about:
»Boer »Polyphenol »Quercetin »SIRT1 »acid »effect »metabolite

The energy-sensing protein SIRT1 is an important regulatory protein that can prolong the life span of model organisms such as yeast and fruit flies. In humans, SIRT1 is possibly involved in the regulation of energy use. The SIRT1 activity can be simulated by various polyphenols. De Boer discovered that polyphenols from green tea stimulated the activity of isolated SIRT1. The quercetin molecule also did this, but an important human quercetin metabolite had the opposite effect. Therefore in intestinal cells, quercetin had no effect on the activity of SIRT1. In experiments with fat cells, both quercetin and a quercetin metabolite were found to change the glucose use in the fat cell.

A change in the energy regulation might be an important process for the realisation of possible health effects of polyphenols in the food. This provides new starting points for further research into the molecular mechanisms of polyphenols. This will allow the health effects of polyphenols to be accurately described.

Polyphenols

Polyphenols are substances of plant origin that occur in numerous fruits and vegetables. Due to their possible health effect, polyphenols are currently sold as nutritional supplements. Yet the scientific basis for the health claims for polyphenols is mostly weak. Results from in vitro studies are often directly translated into possible beneficial health effects in humans. De Boer’s research shows that in vivo research with polyphenol metabolites is necessary to study the effects of polyphenols.

Rubicon

Vincent de Boer recently received a Rubicon fellowship from NWO for his new research into the role of mitochondrial SIRT1 analogues in aging and energy metabolism. He will carry out his research at the Department of Pathology at the Harvard Medical School in Boston.

Vincent de Boer | alfa
Further information:
http://www.hms.harvard.edu

Further reports about: Boer Polyphenol Quercetin SIRT1 acid effect metabolite

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>