Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fatty acid catabolism higher due to polyphenol intake

15.05.2007
Polyphenols, dietary substances from vegetables, fruits and green tea, bring about a change in the energy metabolism. Dutch researcher Vincent de Boer has discovered that polyphenols increase the fatty acid breakdown in rats and influence the glucose use in fat cells.

De Boer carried out his doctoral research at RIKILT - Institute of Food Safety in Wageningen. Much research into the health effects of polyphenols is carried out in vitro. However in the body, polyphenols are quickly and easily converted into polyphenol metabolites. This research was carried out with rats to study the mechanisms and effects of a polyphenol-rich diet. Relevant polyphenol metabolites that are found in humans were also examined.

Quercetin is a polyphenol that is highly abundant in the human diet, such as onions, apples and tea. The study revealed that quercetin metabolites mainly end up in the lungs of rats. Subsequently De Boer discovered that lung cells had a greater fatty acid catabolism if the animals constantly received quercetin in their feed.

Energy regulation

... more about:
»Boer »Polyphenol »Quercetin »SIRT1 »acid »effect »metabolite

The energy-sensing protein SIRT1 is an important regulatory protein that can prolong the life span of model organisms such as yeast and fruit flies. In humans, SIRT1 is possibly involved in the regulation of energy use. The SIRT1 activity can be simulated by various polyphenols. De Boer discovered that polyphenols from green tea stimulated the activity of isolated SIRT1. The quercetin molecule also did this, but an important human quercetin metabolite had the opposite effect. Therefore in intestinal cells, quercetin had no effect on the activity of SIRT1. In experiments with fat cells, both quercetin and a quercetin metabolite were found to change the glucose use in the fat cell.

A change in the energy regulation might be an important process for the realisation of possible health effects of polyphenols in the food. This provides new starting points for further research into the molecular mechanisms of polyphenols. This will allow the health effects of polyphenols to be accurately described.

Polyphenols

Polyphenols are substances of plant origin that occur in numerous fruits and vegetables. Due to their possible health effect, polyphenols are currently sold as nutritional supplements. Yet the scientific basis for the health claims for polyphenols is mostly weak. Results from in vitro studies are often directly translated into possible beneficial health effects in humans. De Boer’s research shows that in vivo research with polyphenol metabolites is necessary to study the effects of polyphenols.

Rubicon

Vincent de Boer recently received a Rubicon fellowship from NWO for his new research into the role of mitochondrial SIRT1 analogues in aging and energy metabolism. He will carry out his research at the Department of Pathology at the Harvard Medical School in Boston.

Vincent de Boer | alfa
Further information:
http://www.hms.harvard.edu

Further reports about: Boer Polyphenol Quercetin SIRT1 acid effect metabolite

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>